Shrinkage Estimation Under Multivariate Elliptic Models

被引:0
|
作者
Arashi, M. [1 ]
Khan, Shahjahan [2 ]
Tabatabaey, S. M. M. [3 ]
Soleimani, H. [3 ]
机构
[1] Shahrood Univ Technol, Fac Math, Shahrood, Iran
[2] Univ So Queensland, Australian Ctr Sustainable Catchments, Dept Math & Comp, Toowoomba, Qld 4350, Australia
[3] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Stat, Mashhad, Iran
关键词
Bias and risk functions; Elliptically contoured distributions; Hotteling's T; (2) statistic; Quadratic loss; Stein-type and Positive-rule shrinkage estimators; Primary; 62H12; Secondary; 62F10; LINEAR-REGRESSION MODELS; DISTRIBUTIONS; DISTURBANCES; VARIANCE;
D O I
10.1080/03610926.2011.602492
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of the location vector of a p-variate elliptically contoured distribution (ECD) is considered using independent random samples from two multivariate elliptically contoured populations when it is apriori suspected that the location vectors of the two populations are equal. For the setting where the covariance structure of the populations is the same, we define the maximum likelihood, Stein-type shrinkage and positive-rule shrinkage estimators. The exact expressions for the bias and quadratic risk functions of the estimators are derived. The comparison of the quadratic risk functions reveals the dominance of the Stein-type estimators if p3. A graphical illustration of the risk functions under a typical member of the elliptically contoured family of distributions is provided to confirm the analytical results.
引用
收藏
页码:2084 / 2103
页数:20
相关论文
共 50 条
  • [1] Shrinkage Estimation for Multivariate Hidden Markov Models
    Fiecas, Mark
    Franke, Juergen
    von Sachs, Rainer
    Kamgaing, Joseph Tadjuidje
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 424 - 435
  • [2] Shrinkage Estimation of a Location Parameter for a Multivariate Skew Elliptic Distribution
    Dominique Fourdrinier
    Tatsuya Kubokawa
    William E. Strawderman
    Sankhya A, 2023, 85 : 808 - 828
  • [3] Shrinkage Estimation of a Location Parameter for a Multivariate Skew Elliptic Distribution
    Fourdrinier, Dominique
    Kubokawa, Tatsuya
    Strawderman, William E.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2023, 85 (01): : 808 - 828
  • [4] Shrinkage estimation for multivariate time series
    Yan Liu
    Yoshiyuki Tanida
    Masanobu Taniguchi
    Statistical Inference for Stochastic Processes, 2021, 24 : 733 - 751
  • [5] Shrinkage estimation for multivariate time series
    Liu, Yan
    Tanida, Yoshiyuki
    Taniguchi, Masanobu
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (03) : 733 - 751
  • [6] Robust multivariate location estimation, admissibility, and shrinkage phenomenon
    Jureckova, Jana
    Sen, Pranab Kumar
    STATISTICS & RISK MODELING, 2006, 24 (02) : 273 - 290
  • [7] Shrinkage estimation in the frequency domain of multivariate time series
    Boehm, Hilmar
    von Sachs, Rainer
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (05) : 913 - 935
  • [8] Multivariate shrinkage estimation of small area means and proportions
    Longford, NT
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1999, 162 : 227 - 245
  • [9] Shrinkage estimation in general linear models
    An, Lihua
    Nkurunziza, Severien
    Fung, Karen Y.
    Krewski, Daniel
    Luginaah, Isaac
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (07) : 2537 - 2549
  • [10] Shrinkage Estimation in Multilevel Normal Models
    Morris, Carl N.
    Lysy, Martin
    STATISTICAL SCIENCE, 2012, 27 (01) : 115 - 134