Robust composite control design of drag-free satellite with Kalman filter-based extended state observer for disturbance reduction

被引:12
作者
Ma, Haojun [1 ,2 ]
Zheng, Jianhua [1 ,2 ]
Han, Peng [1 ]
Gao, Dong [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Space Sci Ctr, 1 Nanertiao St, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Yuquan Rd, Beijing 100049, Peoples R China
关键词
Drag -free control; Composite control; Extended state observer; Kalman filter; Disturbance reduction; H; 1; Control; ATTITUDE-CONTROL; GOCE;
D O I
10.1016/j.asr.2022.07.048
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
For future space-based gravitational wave detectors, drag-free control is one of the core technologies to achieve ambitious ultra-quiet -stable requirements. Generally, the high performance of such a drag-free satellite is severely limited by the intrinsic nonlinearities, various noise and limited bandwidth. To overcome these limitations, a dual-loop drag-free control scheme with the merits of simple structure and tuning method is proposed. First, a special combination of Kalman filter (KF) and extended state observer (ESO) is applied in the inner -loop to perform disturbance reduction. The KF serves as noise filtration, while the ESO accepts the filtered measurement signals to achieve better online reconstruction of states and lumped disturbances. Then, GS/T mixed sensitivity H1 controllers are adopted in the outer-loop to stabilize the test masses in the cage center. The controllers are tuned based on the sensitivity function and complemen-tary sensitivity function specifications to enhance robustness. Finally, a simulation considering various disturbance models is built to test the effectiveness of the control system. A comparison between three types of controllers reveals the advantages of the proposed method in terms of the disturbance attenuation and control performance. (c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:3034 / 3050
页数:17
相关论文
共 37 条
[1]  
Amaro-Seoane P, 2017, Arxiv, DOI arXiv:1702.00786
[2]   Experimental results from the ST7 mission on LISA Pathfinder [J].
Anderson, G. ;
Anderson, J. ;
Anderson, M. ;
Aveni, G. ;
Bame, D. ;
Barela, P. ;
Blackman, K. ;
Carmain, A. ;
Chen, L. ;
Cherng, M. ;
Clark, S. ;
Connally, M. ;
Connolly, W. ;
Conroy, D. ;
Cooper, M. ;
Cutler, C. ;
D'Agostino, J. ;
Demmons, N. ;
Dorantes, E. ;
Dunn, C. ;
Duran, M. ;
Ehrbar, E. ;
Evans, J. ;
Fernandez, J. ;
Franklin, G. ;
Girard, M. ;
Gorelik, J. ;
Hruby, V ;
Hsu, O. ;
Jackson, D. ;
Javidnia, S. ;
Kern, D. ;
Knopp, M. ;
Kolasinski, R. ;
Kuo, C. ;
Le, T. ;
Li, I ;
Liepack, O. ;
Littlefield, A. ;
Maghami, P. ;
Malik, S. ;
Markley, L. ;
Martin, R. ;
Marrese-Reading, C. ;
Mehta, J. ;
Mennela, J. ;
Miller, D. ;
Nguyen, D. ;
O'Donnell, J. ;
Parikh, R. .
PHYSICAL REVIEW D, 2018, 98 (10)
[3]   Drag-free and attitude control for the GOCE satellite [J].
Canuto, Enrico .
AUTOMATICA, 2008, 44 (07) :1766-1780
[4]   Embedded Model Control: Outline of the theory [J].
Canuto, Enrico .
ISA TRANSACTIONS, 2007, 46 (03) :363-377
[5]   The European way to gravimetry: From GOCE to NGGM [J].
Cesare, Stefano ;
Allasio, Andrea ;
Anselmi, Alberto ;
Dionisio, Sabrina ;
Mottini, Sergio ;
Parisch, Manlio ;
Massotti, Luca ;
Silvestrin, Pierluigi .
ADVANCES IN SPACE RESEARCH, 2016, 57 (04) :1047-1064
[6]   Disturbance-Observer-Based Control and Related Methods-An Overview [J].
Chen, Wen-Hua ;
Yang, Jun ;
Guo, Lei ;
Li, Shihua .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (02) :1083-1095
[7]  
Cheng C.-H., 2021, ADV SPACE RES
[8]  
Chi WJ, 2015, 2015 54TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), P542, DOI 10.1109/SICE.2015.7285400
[9]   Inverting and noninverting H-infinity controllers [J].
Christen, U ;
Geering, HP .
SYSTEMS & CONTROL LETTERS, 1997, 30 (01) :31-38
[10]  
Cirillo F., 2007, Controller design for the acquisition phase of the LISA mission using a Kalman filter