Bayesian Hierarchical Compositional Models for Analysing Longitudinal Abundance Data from Microbiome Studies

被引:2
作者
Marti, I. Creus [1 ,2 ]
Moya, A. [1 ,3 ,4 ]
Santonja, F. J. [2 ]
机构
[1] Univ Valencia, Inst Biol Integrat Sistemas I2Sysbio, CSIC, Valencia, Spain
[2] Univ Valencia, Dept Estadist & Invest Operat, Valencia, Spain
[3] Fdn Fomento Invest Sanitaria & Biomed Comunidad Va, Valencia, Spain
[4] CIBER Epidemiol & Salud Publ CIBEResp, Madrid, Spain
关键词
FECAL MICROBIOTA; GUT MICROBIOME; TIME-SERIES; DISTRIBUTIONS; COMMUNITIES; DYNAMICS;
D O I
10.1155/2022/4907527
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gut microbiome plays a significant role in defining the health status of subjects, and recent studies highlight the importance of using time series strategies to analyse microbiome dynamics. In this paper, we develop a Bayesian model for microbiota longitudinal data, based on Dirichlet distribution with time-varying parameters, that take into account the compositional paradigm and consider principal balances. The proposed model can be effective for predicting the future dynamics of a microbial community in the short term and for analysing the microbial interactions using the value of the estimated parameters. The usefulness of the proposed model is illustrated with six different datasets, and a comparison study with four alternative models is provided.
引用
收藏
页数:16
相关论文
共 68 条
  • [1] Human Gut Microbiome and Risk for Colorectal Cancer
    Ahn, Jiyoung
    Sinha, Rashmi
    Pei, Zhiheng
    Dominianni, Christine
    Wu, Jing
    Shi, Jianxin
    Goedert, James J.
    Hayes, Richard B.
    Yang, Liying
    [J]. JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2013, 105 (24): : 1907 - 1911
  • [2] Temporal probabilistic modeling of bacterial compositions derived from 16S rRNA sequencing
    Aijo, Tarmo
    Muller, Christian L.
    Bonneau, Richard
    [J]. BIOINFORMATICS, 2018, 34 (03) : 372 - 380
  • [3] Aitchison John., 2003, CDA workshop
  • [4] Anderson T.W., 1986, STAT ANAL DATA, V2nd, DOI 10.1007/978-94-009-4109-0
  • [5] A Generic Multivariate Framework for the Integration of Microbiome Longitudinal Studies With Other Data Types
    Bodein, Antoine
    Chapleur, Olivier
    Droit, Arnaud
    Cao, Kim-Anh Le
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [6] Brehm J., 1998, P 1998 POL METH SOC
  • [7] The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases
    Brown, J. Mark
    Hazen, Stanley L.
    [J]. ANNUAL REVIEW OF MEDICINE, VOL 66, 2015, 66 : 343 - 359
  • [8] Towards Predictive Models of the Human Gut Microbiome
    Bucci, Vanni
    Xavier, Joao B.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (23) : 3907 - 3916
  • [9] Moving pictures of the human microbiome
    Caporaso, J. Gregory
    Lauber, Christian L.
    Costello, Elizabeth K.
    Berg-Lyons, Donna
    Gonzalez, Antonio
    Stombaugh, Jesse
    Knights, Dan
    Gajer, Pawel
    Ravel, Jacques
    Fierer, Noah
    Gordon, Jeffrey I.
    Knight, Rob
    [J]. GENOME BIOLOGY, 2011, 12 (05):
  • [10] High-dimensional linear state space models for dynamic microbial interaction networks
    Chen, Iris
    Kelkar, Yogeshwar D.
    Gu, Yu
    Zhou, Jie
    Qiu, Xing
    Wu, Hulin
    [J]. PLOS ONE, 2017, 12 (11):