Brain-computer interfaces for EEG neurofeedback: Peculiarities and solutions

被引:34
作者
Huster, Rene J. [1 ,2 ]
Mokom, Zacharais N. [1 ]
Enriquez-Geppert, Stefanie [1 ,2 ,3 ]
Herrmann, Christoph S. [1 ,2 ,4 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Expt Psychol Lab, Dept Psychol, European Med Sch, D-26111 Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Res Ctr Neurosenany Sci, D-26111 Oldenburg, Germany
[3] European Med Sch, Karl Jaspers Clin, Oldenburg, Germany
[4] Hearing4all, Ctr Excellence, Oldenburg, Germany
关键词
Neurofeedback; BCI; Software; EEG; ATTENTION-DEFICIT/HYPERACTIVITY-DISORDER; SLOW CORTICAL POTENTIALS; BIOFEEDBACK; ARTIFACT; REMOVAL; HYPERACTIVITY; CHILDREN; EFFICACY; NETWORK; SIGNALS;
D O I
10.1016/j.ijpsycho.2013.08.011
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multisubject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 45
页数:10
相关论文
共 57 条
[51]   Foundation and practice of neurofeedback for the treatment of epilepsy [J].
Sterman, MB ;
Egner, T .
APPLIED PSYCHOPHYSIOLOGY AND BIOFEEDBACK, 2006, 31 (01) :21-35
[52]   Real-Time Functional Magnetic Resonance Imaging Neurofeedback for Treatment of Parkinson's Disease [J].
Subramanian, Leena ;
Hindle, John V. ;
Johnston, Stephen ;
Roberts, Mark V. ;
Husain, Masud ;
Goebel, Rainer ;
Linden, David .
JOURNAL OF NEUROSCIENCE, 2011, 31 (45) :16309-16317
[53]   rtMEG: A Real-Time Software Interface for Magnetoencephalography [J].
Sudre, Gustavo ;
Parkkonen, Lauri ;
Bock, Elizabeth ;
Baillet, Sylvain ;
Wang, Wei ;
Weber, Douglas J. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[54]   Predicting Successful Learning of SMR Neurofeedback in Healthy Participants: Methodological Considerations [J].
Weber, E. ;
Koeberl, A. ;
Frank, S. ;
Doppelmayr, M. .
APPLIED PSYCHOPHYSIOLOGY AND BIOFEEDBACK, 2011, 36 (01) :37-45
[55]   Functional MRI for neurofeedback: feasibility study on a hand motor task [J].
Yoo, SS ;
Jolesz, FA .
NEUROREPORT, 2002, 13 (11) :1377-1381
[56]   Neural synchrony and white matter variations in the human brain - Relation between evoked gamma frequency and corpus callosum morphology [J].
Zaehle, Tino ;
Herrmann, Christoph S. .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2011, 79 (01) :49-54
[57]   Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance [J].
Zoefel, Benedikt ;
Huster, Rene J. ;
Herrmann, Christoph S. .
NEUROIMAGE, 2011, 54 (02) :1427-1431