Modular filter convergence theorems for abstract sampling type operators

被引:15
作者
Bardaro, C. [1 ]
Boccuto, A. [1 ]
Dimitriou, X. [2 ]
Mantellini, I. [1 ]
机构
[1] Univ Perugia, Dept Math & Comp Sci, I-06123 Perugia, Italy
[2] Univ Athens, Dept Math, Athens 15784, Greece
关键词
filter convergence; filter exhaustiveness; filter convergence in measure; integral operator; sampling series; modular; modular convergence; filter singularity; 41A25; 41A35; 46E30; 47G10; NONLINEAR INTEGRAL-OPERATORS; APPROXIMATION; SIGNALS; RECONSTRUCTION;
D O I
10.1080/00036811.2012.738480
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of approximating a real-valued function f by considering sequences of general operators of sampling type, which include both discrete and integral ones. This approach gives a unitary treatment of various kinds of classical operators, such as Urysohn integral operators, in particular convolution integrals, and generalized sampling series.
引用
收藏
页码:2404 / 2423
页数:20
相关论文
共 35 条
[1]   Statistical convergence of a non-positive approximation process [J].
Agratini, Octavian .
CHAOS SOLITONS & FRACTALS, 2011, 44 (11) :977-981
[2]  
Anastassiou GA, 2011, INTEL SYST REF LIBR, V14, P1, DOI 10.1007/978-3-642-19826-7
[3]  
Angeloni L, 2005, DIFFER INTEGRAL EQU, V18, P855
[4]  
Bardaro C., 2007, Sampling Theory in Signal and Image Processing, V6, P29
[5]  
Bardaro C., 2006, Mathematica Slovaca, V56, P465
[6]  
Bardaro C., 2011, East J. Approx., V17, P181
[7]  
Bardaro C., 2006, APPL ANAL, V85, P383, DOI DOI 10.1080/00036810500380332
[8]  
Bardaro C., 2003, Nonlinear Integral Operators and Applications, De Gruyter Series in Nonlinear Analysis and Applications
[9]  
Bardaro C., 2005, J INEQUAL PURE APPL, V6
[10]   Bivariate Mellin convolution operators: Quantitative approximation theorems [J].
Bardaro, Carlo ;
Mantellini, Ilaria .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) :1197-1207