Simulation of a magneto-mechanical damping machine: analysis, discretization, results

被引:8
作者
Bouillault, F
Buffa, A
Maday, Y
Rapetti, F
机构
[1] Univ Paris 07, UMR 7583 CNRS, LAN, F-75252 Paris, France
[2] LGEP, UMR 8507 CNRS, F-91192 Gif Sur Yvette, France
[3] CNR, IAN, I-27100 Pavia, Italy
[4] Univ Paris 11, UPR 9029 CNRS, ASCI, F-91403 Orsay, France
关键词
domain decomposition method; magneto-mechanical coupled problem; non-conforming finite element approximation; mortar element method; moving systems;
D O I
10.1016/S0045-7825(01)00417-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents and analyzes a method for the simulation of the dynamical behavior of a coupled magnetomechanical system such as a damping machine. We consider a two-dimensional model based on the transverse magnetic formulation of the eddy currents problem for the electromagnetic part and on the motion equation of a rotating rigid body for the mechanical part. The magnetic system is discretized in space by means of Lagrangian finite elements and the sliding mesh mortar method is used to account for the rotation. In time, a one step Euler method is used, implicit for the magnetic and velocity equations. The coupled differential system is solved with an explicit procedure. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:2587 / 2610
页数:24
相关论文
共 15 条
[1]  
[Anonymous], ANAL MATH CALCUL NUM
[2]   The mortar finite element method for 3D Maxwell equations: First results [J].
Ben Belgacem, F ;
Buffa, A ;
Maday, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :880-901
[3]   A SPECTRAL ELEMENT METHODOLOGY TUNED TO PARALLEL IMPLEMENTATIONS [J].
BENBELGACEM, F ;
MADAY, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :59-67
[4]  
BERGH J, 1976, INTERPOLATIOIN SPACE
[5]   OPTIMAL FINITE-ELEMENT INTERPOLATION ON CURVED DOMAINS [J].
BERNARDI, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1212-1240
[6]  
Bernardi C., 1994, PITMAN RES NOTES MAT, VXI, P13
[7]   The mortar method in the wavelet context [J].
Bertoluzza, S ;
Perrier, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04) :647-673
[8]   A multigrid algorithm for the mortar finite element method [J].
Braess, D ;
Dahmen, W ;
Wieners, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :48-69
[9]   A sliding mesh-mortar method for a two dimensional eddy currents model of electric engines [J].
Buffa, A ;
Maday, Y ;
Rapetti, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (02) :191-228
[10]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems