Information Retrieval as a Domain: Visualizations Based on Two Data Sets

被引:0
|
作者
Raghavan, K. S. [1 ]
Apoorva, K. H. [1 ]
Jivrajani, Aarti [1 ]
机构
[1] PES Univ, Ctr Knowledge Analyt & Ontol Engn KAnOE, Bangalore 560085, Karnataka, India
来源
KNOWLEDGE ORGANIZATION | 2015年 / 42卷 / 08期
关键词
information retrieval; domain; domain analysis;
D O I
暂无
中图分类号
G25 [图书馆学、图书馆事业]; G35 [情报学、情报工作];
学科分类号
1205 ; 120501 ;
摘要
A domain is seen as a subject of discourse whose extensions and intensions are defined by the scope and content of its research literature. Mapping the contours of a domain over a period helps in visualizing the changes in the research frontiers of the domain thus indicating the transformations as well as trends in research in the domain. In this paper research literature in information retrieval from IEEE and EBSCO databases were used as data sets to map the contours of the research literature in the area of information retrieval over the last 14 years. The two data sets suggest differing perspectives and emphasis between the two research communities.
引用
收藏
页码:591 / 601
页数:11
相关论文
共 50 条
  • [1] Biodiversity information retrieval across networked data sets
    Sarinder, K. K. S.
    Lim, L. H. S.
    Merican, A. F.
    Dimyati, K.
    ASLIB PROCEEDINGS, 2010, 62 (4-5): : 514 - 522
  • [2] Visualizations for the Spyglass Ontology-Based Information Analysis and Retrieval System
    Lin, Hong
    Rushing, John
    Berendes, Todd
    Stein, Cara
    Graves, Sara
    PROCEEDINGS OF THE 48TH ANNUAL SOUTHEAST REGIONAL CONFERENCE (ACM SE 10), 2010, : 202 - 207
  • [3] Probability-based fusion of information retrieval result sets
    D. Lillis
    F. Toolan
    A. Mur
    L. Peng
    R. Collier
    J. Dunnion
    Artificial Intelligence Review, 2006, 25 : 179 - 191
  • [4] Probability-based fusion of information retrieval result sets
    Lillis, D.
    Toolan, F.
    Mur, A.
    Peng, L.
    Collier, R.
    Dunnion, J.
    ARTIFICIAL INTELLIGENCE REVIEW, 2006, 25 (1-2) : 179 - 191
  • [5] Document Classification in Information Retrieval System based on Neutrosophic sets
    El Barbary, O. G.
    FILOMAT, 2020, 34 (01) : 89 - 97
  • [6] A Domain Classification-based Information Retrieval System
    Panda, Soumya Priyadarsini
    Mohanty, Jasaswi Prasad
    PROCEEDINGS OF 2020 6TH IEEE INTERNATIONAL WOMEN IN ENGINEERING (WIE) CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2020), 2020, : 134 - 137
  • [7] Research on Domain Ontology Based Information Retrieval Model
    Guo Chengxia
    Huang Dongmei
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 541 - 543
  • [8] Research of Information Retrieval Method Based on Fuzzy Rough Sets Theory
    Tan, Dekun
    Sun, Hui
    Deng, Minjun
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 576 - +
  • [9] Ontology-based information extraction and information retrieval in health care domain
    Dung, Tran Quoc
    Kameyama, Wataru
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2007, 4654 : 323 - +
  • [10] Domain Specific Custom Search for Quicker Information Retrieval
    Saha, Tushar Kanti
    Ali, A. B. M. Shawkat
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2013, 3 (03) : 26 - 39