Perturbing transient random walk in a random environment with cookies of maximal strength

被引:6
作者
Bauernschubert, Elisabeth [1 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2013年 / 49卷 / 03期
关键词
Excited random walk in a random environment; Cookies of strength 1; Recurrence; Transience; Subcritical branching process in a random environment with immigration; EXCITED RANDOM-WALKS; BRANCHING-PROCESSES;
D O I
10.1214/12-AIHP479
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a left-transient random walk in a random environment on Z that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.
引用
收藏
页码:638 / 653
页数:16
相关论文
共 19 条
[1]  
ATHREYA K. B., 1972, GRUNDLEHREN MATH WIS, V196
[2]   BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS .1. EXTINCTION PROBABILITIES [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1499-+
[3]   BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS, II - LIMIT THEOREMS [J].
ATHREYA, KB ;
KARLIN, S .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1843-+
[4]   Rate of growth of a transient cookie random walk [J].
Basdevant, Anne-Laure ;
Singh, Arvind .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :811-851
[5]   On the speed of a cookie random walk [J].
Basdevant, Anne-Laure ;
Singh, Arvind .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (3-4) :625-645
[6]   EXCITED RANDOM WALK [J].
Benjamini, Itai ;
Wilson, David B. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2003, 8 :86-92
[7]  
Durrett R., 1996, PROBABILITY THEORY E
[8]   Excited against the tide: A random walk with competing drifts [J].
Holmes, Mark .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (03) :745-773
[9]  
Kellerer H. G., 1992, PREPRINT
[10]   Positively and negatively excited random walks on integers, with branching processes [J].
Kosygina, Elena ;
Zerner, Martin P. W. .
ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 :1952-1979