A local version of Hardy spaces associated with operators on metric spaces

被引:14
作者
Gong RuMing [1 ,2 ]
Li Ji [3 ]
Yan LiXin [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
local Hardy space; non-negative self-adjoint operator; semigroups; local; (1; p)-atoms; Moser type local boundedness condition; space of homogeneous type; RIESZ TRANSFORM; BOUNDS;
D O I
10.1007/s11425-012-4428-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, d, A mu) be a metric measure space endowed with a distance d and a nonnegative Borel doubling measure A mu. Let L be a second order self-adjoint positive operator on L (2)(X). Assume that the semigroup e (-tL) generated by -L satisfies the Gaussian upper bounds on L (2)(X). In this article we study a local version of Hardy space h (L) (1) (X) associated with L in terms of the area function characterization, and prove their atomic characters. Furthermore, we introduce a Moser type local boundedness condition for L, and then we apply this condition to show that the space h (L) (1) (X) can be characterized in terms of the Littlewood-Paley function. Finally, a broad class of applications of these results is described.
引用
收藏
页码:315 / 330
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
Arendt W., 1997, J. Oper. Theory, V38, P87
[3]   Hardy spaces and divergence operators on strongly Lipschitz domains of Rn [J].
Auscher, P ;
Russ, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :148-184
[4]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[5]   Maximal inequalities and Riesz transform estimates on LP spaces for Schrodinger operators with nonnegative potentials [J].
Auscher, Pascal ;
Ben Ali, Besma .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (06) :1975-2013
[6]  
Christ M., 1990, Colloq. Math., V61, P601
[7]   Gaussian heat kernel upper bounds via the Phragmen-Lindelof theorem [J].
Coulhon, Thierry ;
Sikora, Adam .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 :507-544
[8]  
Duong X T, REV MAT IBE IN PRESS
[9]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973
[10]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279