Extended mapping approach and new solutions of the (2+1)-dimensional breaking soliton equations

被引:7
作者
He, BG
Xu, CZ
Zhang, JF [1 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinan 321004, Peoples R China
[2] Jinhua Educ Coll, Dept Phys, Jinan 32100, Peoples R China
关键词
extended mapping approach; (2+1)-dimensional breaking soliton equation; soliton wave structures;
D O I
10.7498/aps.55.511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extended mapping approach is introduced to solve the (2 + 1)-dimensional breaking soliton equations. On its basis, abundant propagating and non-propagating structures are found by selecting the arbitrary function appropriately. However, only periodic soliton wave structures are revealed in this paper.
引用
收藏
页码:511 / 516
页数:6
相关论文
共 48 条
[1]  
BOGOYAVLENSKII OI, 1990, USP MAT NAUK, V45, P17
[2]   SCATTERING OF LOCALIZED SOLITONS IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MARTINA, L ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1988, 132 (8-9) :432-439
[3]   NONLINEAR EVOLUTION EQUATIONS SOLVABLE BY INVERSE SPECTRAL TRANSFORM .1. [J].
CALOGERO, F ;
DEGASPERIS, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 1976, 32 (02) :201-242
[4]  
CALOGERO F, 1977, NUOVO CIMENTO B, V39, P54
[5]   The novel multi-soliton solutions of the MKdV-Sine Gordon equations [J].
Chen, DY ;
Zhang, DJ ;
Deng, SF .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (02) :658-659
[6]   Remarks on some solutions of soliton equations [J].
Chen, DY ;
Zhang, DJ ;
Deng, SF .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (08) :2072-2073
[7]  
Chen Y, 2003, CHINESE PHYS, V12, P940, DOI 10.1088/1009-1963/12/9/303
[8]   The novel multisoliton solutions of KP equations [J].
Deng, SF ;
Chen, DY .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (10) :3174-3175
[9]   A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves [J].
Fan, EG ;
Hon, YC .
CHAOS SOLITONS & FRACTALS, 2003, 15 (03) :559-566
[10]   Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation [J].
Fan, EG ;
Chao, L .
PHYSICS LETTERS A, 2001, 285 (5-6) :373-376