Evaluation of machine learning strategies for imaging confirmed prostate cancer recurrence prediction on electronic health records

被引:9
作者
Beinecke, Jacqueline Michelle [1 ,2 ]
Anders, Patrick [3 ]
Schurrat, Tino [3 ]
Heider, Dominik [1 ]
Luster, Markus [3 ]
Librizzi, Damiano [3 ]
Hauschild, Anne-Christin [1 ,2 ]
机构
[1] Philipps Univ Marburg, Dept Math & Comp Sci, Marburg, Germany
[2] Univ Med Ctr Gottingen, Inst Med Informat, Gottingen, Germany
[3] Univ Hosp Marburg, Dept Nucl Med, Marburg, Germany
关键词
Prostate cancer; Cancer recurrence; Ga-68-PSMA PET/CT; Machine learning; Multivariate analysis; GA-68-LABELED PSMA LIGAND; MEMBRANE ANTIGEN-EXPRESSION; BIOCHEMICAL RECURRENCE; PET/CT; DIAGNOSIS; DISEASE; PSA; RECONSTRUCTION; ACQUISITION; VALIDATION;
D O I
10.1016/j.compbiomed.2022.105263
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The main screening parameter to monitor prostate cancer recurrence (PCR) after primary treatment is the serum concentration of prostate-specific antigen (PSA). In recent years, Ga-68-PSMA PET/CT has become an important method for additional diagnostics in patients with biochemical recurrence. Purpose: While Ga-68-PSMA PET/CT performs better, it is an expensive, invasive, and time-consuming examination. Therefore, in this study, we aim to employ modern multivariate Machine Learning (ML) methods on electronic health records (EHR) of prostate cancer patients to improve the prediction of imaging confirmed PCR (IPCR). Methods: We retrospectively analyzed the clinical information of 272 patients, who were examined using Ga-68PSMA PET/CT. The PSA values ranged from 0 ng/mL to 2270.38 ng/mL with a median PSA level at 1.79 ng/mL. We performed a descriptive analysis using Logistic Regression. Additionally, we evaluated the predictive performance of Logistic Regression, Support Vector Machine, Gradient Boosting, and Random Forest. Finally, we assessed the importance of all features using Ensemble Feature Selection (EFS). Results: The descriptive analysis found significant associations between IPCR and logarithmic PSA values as well as between IPCR and performed hormonal therapy. Our models were able to predict IPCR with an AUC score of 0.78 +/- 0.13 (mean +/- standard deviation) and a sensitivity of 0.997 +/- 0.01. Features such as PSA, PSA doubling time, PSA velocity, hormonal therapy, radiation treatment, and injected activity show high importance for IPCR prediction using EFS. Conclusion: This study demonstrates the potential of employing a multitude of parameters into multivariate ML models to improve identification of non-recurring patients compared to the current focus on the main screening parameter (PSA). We showed that ML models are able to predict IPCR, detectable by Ga-68-PSMA PET/CT, and thereby pave the way for optimized early imaging and treatment.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Predicting Breast Cancer Recurrence Using Machine Learning Techniques: A Systematic Review [J].
Abreu, Pedro Henriques ;
Santos, Miriam Seoane ;
Abreu, Miguel Henriques ;
Andrade, Bruno ;
Silva, Daniel Castro .
ACM COMPUTING SURVEYS, 2016, 49 (03)
[2]   Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience [J].
Afshar-Oromieh, A. ;
Haberkorn, U. ;
Schlemmer, H. P. ;
Fenchel, M. ;
Eder, M. ;
Eisenhut, M. ;
Hadaschik, B. A. ;
Kopp-Schneider, A. ;
Roethke, M. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (05) :887-897
[3]   Performance of [68Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomy-a multi-centre evaluation of 2533 patients [J].
Afshar-Oromieh, Ali ;
da Cunha, Marcelo Livorsi ;
Wagner, Jairo ;
Haberkorn, Uwe ;
Debus, Nils ;
Weber, Wolfgang ;
Eiber, Matthias ;
Holland-Letz, Tim ;
Rauscher, Isabel .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (09) :2925-2934
[4]   Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients [J].
Afshar-Oromieh, Ali ;
Holland-Letz, Tim ;
Giesel, Frederik L. ;
Kratochwil, Clemens ;
Mier, Walter ;
Haufe, Sabine ;
Debus, Nils ;
Eder, Matthias ;
Eisenhut, Michael ;
Schaefer, Martin ;
Neels, Oliver ;
Hohenfellner, Markus ;
Kopka, Klaus ;
Kauczor, Hans-Ulrich ;
Debus, Juergen ;
Haberkorn, Uwe .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (08) :1258-1268
[5]   The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer [J].
Afshar-Oromieh, Ali ;
Avtzi, Eleni ;
Giesel, Frederik L. ;
Holland-Letz, Tim ;
Linhart, Heinz G. ;
Eder, Matthias ;
Eisenhut, Michael ;
Boxler, Silvan ;
Hadaschik, Boris A. ;
Kratochwil, Clemens ;
Weichert, Wilko ;
Kopka, Klaus ;
Debus, Juergen ;
Haberkorn, Uwe .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :197-209
[6]   Comparison of PET imaging with a 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer [J].
Afshar-Oromieh, Ali ;
Zechmann, Christian M. ;
Malcher, Anna ;
Eder, Matthias ;
Eisenhut, Michael ;
Linhart, Heinz G. ;
Holland-Letz, Tim ;
Hadaschik, Boris A. ;
Giesel, Frederik L. ;
Debus, Juergen ;
Haberkorn, Uwe .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2014, 41 (01) :11-20
[7]   Multiphasic 68Ga-PSMA PET/CT in the Detection of Early Recurrence in Prostate Cancer Patients with a PSA Level of Less Than 1 ng/mL: A Prospective Study of 135 Patients [J].
Beheshti, Mohsen ;
Manafi-Farid, Reyhaneh ;
Geinitz, Hans ;
Vali, Reza ;
Loidl, Wolfgang ;
Mottaghy, Felix M. ;
Langsteger, Werner .
JOURNAL OF NUCLEAR MEDICINE, 2020, 61 (10) :1484-1490
[8]   Standards for PET Image Acquisition and Quantitative Data Analysis [J].
Boellaard, Ronald .
JOURNAL OF NUCLEAR MEDICINE, 2009, 50 :11S-20S
[9]  
BURMAN P, 1989, BIOMETRIKA, V76, P503, DOI 10.2307/2336116
[10]   Pan-cancer analysis of whole genomes [J].
Campbell, Peter J. ;
Getz, Gad ;
Korbel, Jan O. ;
Stuart, Joshua M. ;
Jennings, Jennifer L. ;
Stein, Lincoln D. ;
Perry, Marc D. ;
Nahal-Bose, Hardeep K. ;
Ouellette, B. F. Francis ;
Li, Constance H. ;
Rheinbay, Esther ;
Nielsen, G. Petur ;
Sgroi, Dennis C. ;
Wu, Chin-Lee ;
Faquin, William C. ;
Deshpande, Vikram ;
Boutros, Paul C. ;
Lazar, Alexander J. ;
Hoadley, Katherine A. ;
Louis, David N. ;
Dursi, L. Jonathan ;
Yung, Christina K. ;
Bailey, Matthew H. ;
Saksena, Gordon ;
Raine, Keiran M. ;
Buchhalter, Ivo ;
Kleinheinz, Kortine ;
Schlesner, Matthias ;
Zhang, Junjun ;
Wang, Wenyi ;
Wheeler, David A. ;
Ding, Li ;
Simpson, Jared T. ;
O'Connor, Brian D. ;
Yakneen, Sergei ;
Ellrott, Kyle ;
Miyoshi, Naoki ;
Butler, Adam P. ;
Royo, Romina ;
Shorser, Solomon, I ;
Vazquez, Miguel ;
Rausch, Tobias ;
Tiao, Grace ;
Waszak, Sebastian M. ;
Rodriguez-Martin, Bernardo ;
Shringarpure, Suyash ;
Wu, Dai-Ying ;
Demidov, German M. ;
Delaneau, Olivier ;
Hayashi, Shuto .
NATURE, 2020, 578 (7793) :82-+