A facile method to fabricate a double-layer stainless steel mesh for effective separation of water-in-oil emulsions with high flux

被引:85
|
作者
Cai, Yahui [1 ]
Chen, Dongyun [1 ]
Li, Najun [1 ]
Xu, Qingfeng [1 ]
Li, Hua [1 ]
He, Jinghui [1 ]
Lu, Jianmei [1 ]
机构
[1] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
OIL/WATER SEPARATION; COATED MESH; MEMBRANES; SURFACES; SUPEROLEOPHOBICITY; SUPERHYDROPHOBICITY; SUPERHYDROPHILICITY; SUPEROLEOPHILICITY; WETTABILITY; MIXTURES;
D O I
10.1039/c6ta08168a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil wastewater, which is generated by oil discharge from industrial processes and daily human activities, is a major source of water pollution worldwide, which poses a serious threat to the environment and the health of human beings. To date, the separation of emulsified water-in-oil mixtures has remained a challenge owing to the excellent stability displayed by water-in-oil emulsions. Therefore, developing a versatile material that could effectively separate water-in-oil emulsions is highly desirable. In the present study, a double-layer stainless steel mesh (DSSM) was fabricated by modification of a trichlorovinylsilane-pre-coated stainless steel mesh with different polymers, poly-(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) and poly(divinylbenzene) (PDVB), for application in the separation of water-in-oil emulsions. The key feature of the DSSM separation device was that it imparted superhydrophobic properties (water contact angle > 150 degrees) to the demulsifying PDMAEMA agent using PDVB. The DSSM thus afforded dual functionalities, i.e., high flux and excellent separation efficiency. The DSSM could effectively break down emulsions with the demulsifying mesh and subsequently allowed oil to pass through the superhydrophobic mesh while water remained on the mesh surface. Furthermore, the entire separation process was easy to operate, with gravity acting as the driving force, and the separation efficiency was thus high. Moreover, the DSSM maintained high separation efficiency even after 10 separation cycles. These outstanding properties make it an ideal candidate for practical application in water-in-oil emulsion separation.
引用
收藏
页码:18815 / 18821
页数:7
相关论文
共 50 条
  • [1] A Facile and Effective Method to Fabricate Superhydrophobic/Superoeophilic Surface for the Separation of Both Water/Oil Mixtures and Water-in-Oil Emulsions
    Li, Feiran
    Wang, Ziran
    Pan, Yunlu
    Zhao, Xuezeng
    POLYMERS, 2017, 9 (11):
  • [2] Facile fabrication of superhydrophobic copper hydroxide coated mesh for effective separation of water-in-oil emulsions
    Yin, Xingxing
    Wang, Zhanhui
    Shen, Yongqian
    Mu, Peng
    Zhu, Guorong
    Li, Jian
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 230
  • [3] Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Water-in-Oil Emulsions with High Flux
    Zhang, Wenbin
    Shi, Zhun
    Zhang, Feng
    Liu, Xia
    Jin, Jian
    Jiang, Lei
    ADVANCED MATERIALS, 2013, 25 (14) : 2071 - 2076
  • [4] Electric double layer effects in water separation from water-in-oil emulsions
    Sinha, Shayandev
    Bae, Kyeong Il
    Das, Siddhartha
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 489 : 216 - 222
  • [5] Laser-induced stainless steel mesh for high effective water/oil separation
    Chen, Tianchi
    Liu, Hongtao
    Yang, Haifeng
    Yan, Wei
    Zhu, Wei
    Liu, Hao
    Guo, Kaijin
    MICRO & NANO LETTERS, 2018, 13 (01): : 72 - 76
  • [6] A 3D Janus stainless steel mesh bed with high efficiency and flux for on-demand oil-in-water and water-in-oil emulsion separation
    Liu, Zihan
    Zuo, Jihao
    Zhao, Ting
    Chen, Zehao
    Zeng, Xinjuan
    Chen, Min
    Xu, Shouping
    Cheng, Jiang
    Wen, Xiufang
    Pi, Pihui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 289
  • [7] A Versatile Coating Approach to Fabricate Superwetting Membranes for Separation of Water-in-Oil Emulsions
    Yi Hou
    Chun-ting Duan
    赵宁
    Huan Zhang
    Yi-ping Zhao
    Li Chen
    Hong-jun Dai
    徐坚
    Chinese Journal of Polymer Science, 2016, 34 (10) : 1234 - 1239
  • [8] A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions
    Yi Hou
    Chun-ting Duan
    Ning Zhao
    Huan Zhang
    Yi-ping Zhao
    Li Chen
    Hong-jun Dai
    Jian Xu
    Chinese Journal of Polymer Science, 2016, 34 : 1234 - 1239
  • [9] A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions
    Hou, Yi
    Duan, Chun-ting
    Zhao, Ning
    Zhang, Huan
    Zhao, Yi-ping
    Chen, Li
    Dai, Hong-jun
    Xu, Jian
    CHINESE JOURNAL OF POLYMER SCIENCE, 2016, 34 (10) : 1234 - 1239
  • [10] High efficiency and flux separation of water-in-oil emulsions of superhydrophobic microporous carbon aerogels
    Seongjae Myeong
    Chaehun Lim
    Seongmin Ha
    Chung Gi Min
    Naeun Ha
    Young-Seak Lee
    Carbon Letters, 2024, 34 : 1247 - 1257