Gaussian Maximizers for Quantum Gaussian Observables and Ensembles

被引:14
作者
Holevo, Alexander S. [1 ]
机构
[1] Steklov Math Inst, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Entropy; Hilbert space; Density measurement; Covariance matrices; Channel capacity; Atmospheric measurements; Particle measurements; Gaussian observable; classical capacity; Gaussian ensemble; coherent states; accessible information; Gaussian optimizers conjecture; heterodyne measurement; ensemble-observable duality; INFORMATION;
D O I
10.1109/TIT.2020.2987789
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we prove two results related to the Gaussian optimizers conjecture for multimode bosonic system with gauge symmetry. First, we argue that the classical capacity of an arbitrary Gaussian observable is attained on a Gaussian ensemble of coherent states. This generalizes results previously known for heterodyne measurement in one mode. By using this fact and continuous variable version of ensemble-observable duality, we prove an old conjecture that accessible information of arbitrary Gaussian ensemble is attained on the multimode generalization of the heterodyne measurement.
引用
收藏
页码:5634 / 5641
页数:8
相关论文
共 18 条
[1]  
Barchielli A., 2006, P QUANT PROB, P65
[2]  
Belavkin V. P., 1973, RADIO ENG ELECT PHYS, V19, P1349
[3]  
Belavkin V. P., 1974, RADIO ENG ELECT PHYS, V19, P39
[4]  
Cover T. M., 1996, ELEMENTS INFORM THEO, V2nd
[5]   Informational power of quantum measurements [J].
Dall'Arno, Michele ;
D'Ariano, Giacomo Mauro ;
Sacchi, Massimiliano F. .
PHYSICAL REVIEW A, 2011, 83 (06)
[6]  
Dobrushin R. L., 1959, RUSSIAN MATH SURVEYS, V14, P3
[7]   Majorization and additivity for multimode bosonic Gaussian channels [J].
Giovannetti, V. ;
Holevo, A. S. ;
Mari, A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 182 (02) :284-293
[8]   A Solution of Gaussian Optimizer Conjecture for Quantum Channels [J].
Giovannetti, V. ;
Holevo, A. S. ;
Garcia-Patron, R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) :1553-1571
[9]   Quantum information and correlation bounds [J].
Hall, MJW .
PHYSICAL REVIEW A, 1997, 55 (01) :100-113
[10]   Entanglement-Breaking Channels in Infinite Dimensions [J].
Holevo, A. S. .
PROBLEMS OF INFORMATION TRANSMISSION, 2008, 44 (03) :171-184