NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction

被引:23
作者
Pardoe, Heath R. [1 ]
Kuzniecky, Ruben [1 ]
机构
[1] NYU, Comprehens Epilepsy Ctr, Sch Med, 223 East 34th St, New York, NY 10016 USA
关键词
Cloud computing; Morphometry; Age prediction; Software as a service; CORTICAL THICKNESS; BRAIN-AGE; PATTERN-RECOGNITION; SEX-DIFFERENCES; MOTION; MATURATION;
D O I
10.1007/s12021-017-9346-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 42 条
  • [1] Subtle In-Scanner Motion Biases Automated Measurement of Brain Anatomy From In Vivo MRI
    Alexander-Bloch, Aaron
    Clasen, Liv
    Stockman, Michael
    Ronan, Lisa
    Lalonde, Francois
    Giedd, Jay
    Raznahan, Armin
    [J]. HUMAN BRAIN MAPPING, 2016, 37 (07) : 2385 - 2397
  • [2] [Anonymous], 2017, MOMCONNECT, DOI DOI 10.13140/RG.2.2.21122.79048
  • [3] Quantification of biological aging in young adults
    Belsky, Daniel W.
    Caspi, Avshalom
    Houts, Renate
    Cohen, Harvey J.
    Corcoran, David L.
    Danese, Andrea
    Harrington, HonaLee
    Israel, Salomon
    Levine, Morgan E.
    Schaefer, Jonathan D.
    Sugden, Karen
    Williams, Ben
    Yashin, Anatoli I.
    Poulton, Richie
    Moffitt, Terrie E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (30) : E4104 - E4110
  • [4] Brain Structure in Young and Old East Asians and Westerners: Comparisons of Structural Volume and Cortical Thickness
    Chee, Michael Wei Liang
    Zheng, Hui
    Goh, Joshua Oon Soo
    Park, Denise
    Sutton, Bradley P.
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 2011, 23 (05) : 1065 - 1079
  • [5] Cole J.H., 2017, Neuroimage, P1
  • [6] Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline
    Cole, James H.
    Annus, Tiina
    Wilson, Liam R.
    Remtulla, Ridhaa
    Hong, Young T.
    Fryer, Tim D.
    Acosta-Cabronero, Julio
    Cardenas-Blanco, Arturo
    Smith, Robert
    Menon, David K.
    Zaman, Shahid H.
    Nestor, Peter J.
    Holland, Anthony J.
    [J]. NEUROBIOLOGY OF AGING, 2017, 56 : 41 - 49
  • [7] Prediction of Brain Age Suggests Accelerated Atrophy after Traumatic Brain Injury
    Cole, James H.
    Leech, Robert
    Sharp, David J.
    [J]. ANNALS OF NEUROLOGY, 2015, 77 (04) : 571 - 581
  • [8] Open is not enough. Let's take the next step: an integrated, community-driven computing platform for neuroscience
    Davison, Andrew P.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2012, 6
  • [9] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [10] Prediction of Individual Brain Maturity Using fMRI
    Dosenbach, Nico U. F.
    Nardos, Binyam
    Cohen, Alexander L.
    Fair, Damien A.
    Power, Jonathan D.
    Church, Jessica A.
    Nelson, Steven M.
    Wig, Gagan S.
    Vogel, Alecia C.
    Lessov-Schlaggar, Christina N.
    Barnes, Kelly Anne
    Dubis, Joseph W.
    Feczko, Eric
    Coalson, Rebecca S.
    Pruett, John R., Jr.
    Barch, Deanna M.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    [J]. SCIENCE, 2010, 329 (5997) : 1358 - 1361