On the best Sobolev inequality

被引:55
作者
Aubin, T
Li, YY
机构
[1] Univ Paris 06, Dept Math, F-75252 Paris 05, France
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1999年 / 78卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0021-7824(99)00012-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the best constant in the Sobolev inequality (W-1,W-p subset of L-p* with 1/p* = 1/p - 1/n and 1 < p < n) is achieved on compact Riemannian manifolds, or only complete under some hypotheses. We also establish stronger inequalities where the norms are to some exponent which seems optimal. (C) Elsevier, Paris.
引用
收藏
页码:353 / 387
页数:35
相关论文
共 38 条
[1]   SOME REMARKS ON SOBOLEV TYPE INEQUALITIES [J].
ADIMURTHI ;
YADAVA, SL .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (04) :427-442
[2]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[3]   Best constants in Sobolev inequalities for compact manifolds of nonpositive curvature [J].
Aubin, T ;
Druet, O ;
Hebey, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (09) :1117-1121
[4]  
Aubin T., 1982, GRUNDLEHREN MATH WIS, V252
[5]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[6]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[7]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]  
Brezis H., 1989, PARTIAL DIFFERENTIAL, P149
[10]   EXTREMALS OF FUNCTIONALS WITH COMPETING SYMMETRIES [J].
CARLEN, EA ;
LOSS, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (02) :437-456