Sperm navigation along helical paths in 3D chemoattractant landscapes

被引:164
作者
Jikeli, Jan F. [1 ]
Alvarez, Luis [1 ]
Friedrich, Benjamin M. [2 ]
Wilson, Laurence G. [3 ]
Pascal, Rene [1 ]
Colin, Remy [4 ]
Pichlo, Magdalena [1 ]
Rennhack, Andreas [1 ]
Brenker, Christoph [5 ]
Kaupp, U. Benjamin [1 ]
机构
[1] Ctr Adv European Studies & Res Caesar, Mol Sensory Syst, D-53175 Bonn, Germany
[2] Max Planck Inst Phys Komplexer Syst, Biol Phys, D-01187 Dresden, Germany
[3] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[4] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[5] Univ Munster, Ctr Reprod Med & Androl, D-48149 Munster, Germany
关键词
CHANNEL CONTROLS CHEMOSENSATION; HOLOGRAPHIC MICROSCOPY; CHEMOTAXIS; MOVEMENT; ORIENTATION; SPERMATOZOA; CGMP; CA2+; MICROORGANISMS; RHEOTAXIS;
D O I
10.1038/ncomms8985
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sperm require a sense of direction to locate the egg for fertilization. They follow gradients of chemical and physical cues provided by the egg or the oviduct. However, the principles underlying three-dimensional (3D) navigation in chemical landscapes are unknown. Here using holographic microscopy and optochemical techniques, we track sea urchin sperm navigating in 3D chemoattractant gradients. Sperm sense gradients on two timescales, which produces two different steering responses. A periodic component, resulting from the helical swimming, gradually aligns the helix towards the gradient. When incremental path corrections fail and sperm get off course, a sharp turning manoeuvre puts sperm back on track. Turning results from an 'off' Ca2+ response signifying a chemoattractant stimulation decrease and, thereby, a drop in cyclic GMP concentration and membrane voltage. These findings highlight the computational sophistication by which sperm sample gradients for deterministic klinotaxis. We provide a conceptual and technical framework for studying microswimmers in 3D chemical landscapes.
引用
收藏
页数:10
相关论文
共 65 条
[1]   The computational sperm cell [J].
Alvarez, Luis ;
Friedrich, Benjamin M. ;
Gompper, Gerhard ;
Kaupp, U. Benjamin .
TRENDS IN CELL BIOLOGY, 2014, 24 (03) :198-207
[2]   The rate of change in Ca2+ concentration controls sperm chemotaxis [J].
Alvarez, Luis ;
Dai, Luru ;
Friedrich, Benjamin M. ;
Kashikar, Nachikel D. ;
Gregor, Ingo ;
Pascal, Rene ;
Kaupp, U. Benjamin .
JOURNAL OF CELL BIOLOGY, 2012, 196 (05) :653-663
[3]  
[Anonymous], 1979, Computer Image Processing and Recognition
[4]  
[Anonymous], J MATH BIOL
[5]   Behavioral Mechanism during Human Sperm Chemotaxis: Involvement of Hyperactivation [J].
Armon, Leah ;
Eisenbach, Michael .
PLOS ONE, 2011, 6 (12)
[6]   Thermotaxis of Human Sperm Cells in Extraordinarily Shallow Temperature Gradients Over a Wide Range [J].
Bahat, Anat ;
Caplan, S. Roy ;
Eisenbach, Michael .
PLOS ONE, 2012, 7 (07)
[7]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[8]  
BERG HC, 1972, NATURE, V239, P500, DOI 10.1038/239500a0
[9]   An Atypical CNG Channel Activated by a Single cGMP Molecule Controls Sperm Chemotaxis [J].
Boenigk, Wolfgang ;
Loogen, Astrid ;
Seifert, Reinhard ;
Kashikar, Nachiket ;
Klemm, Clementine ;
Krause, Eberhard ;
Hagen, Volker ;
Kremmer, Elisabeth ;
Struenker, Timo ;
Kaupp, U. Benjamin .
SCIENCE SIGNALING, 2009, 2 (94) :ra68
[10]   Ca2+ spikes in the flagellum control chemotactic behavior of sperm [J].
Böhmer, M ;
Van, Q ;
Weyand, I ;
Hagen, V ;
Beyermann, M ;
Matsumoto, M ;
Hoshi, M ;
Hildebrand, E ;
Kaupp, UB .
EMBO JOURNAL, 2005, 24 (15) :2741-2752