Role of Surface Polarity in Self-Catalyzed Nucleation and Evolution of GaN Nanostructures

被引:33
作者
Sahoo, Prasana [1 ]
Dhara, S. [1 ]
Amirthapandian, S. [2 ]
Kamruddin, M. [1 ]
Dash, S. [1 ]
Panigrahi, B. K. [2 ]
Tyagi, A. K. [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Surface & Nanosci Div, Kalpakkam 603102, Tamil Nadu, India
[2] Indira Gandhi Ctr Atom Res, Div Mat Phys, Kalpakkam 603102, Tamil Nadu, India
关键词
GALLIUM NITRIDE NANOWIRES; MOLECULAR-BEAM EPITAXY; GROWTH; PHOTOLUMINESCENCE; NANORODS; NANOTIPS; STRAIN; MODES; FILMS;
D O I
10.1021/cg300037q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-catalytic growth of GaN nanotips and nanoparticles, grown by chemical vapor deposition technique, are investigated. Three important parameters, comprised of incubation time, anisotropy of diffusion, and rate-limiting factors of Ga and N adatoms migration over polar and nonpolar surfaces, are found to play significant roles in determining the final morphology of these nanostructures. Nucleation of GaN nanotips takes place under Ga-rich conditions. As the reaction proceeds, the stochiometry changes occur as a result of a shift in Ga-rich to N-rich conditions on the surface. In all of these cases, the growth continues to be in vapor-solid mode. The conical shape of the nanotips is explained in terms of differential growth in the reduced surface diffusion of Ga under N-rich conditions on polar surfaces (0001) relative to nonpolar surfaces (10 (1) over bar0). Nanoparticles are grown initially in N-rich conditions with significantly shorter incubation times. A mechanistic approach that expounds evolution of nanotips and nanoparticles is elucidated in details using crystallographic and electronic structural studies.
引用
收藏
页码:2375 / 2381
页数:7
相关论文
共 40 条
[1]   Triangular gallium nitride nanorods [J].
Bae, SY ;
Seo, HW ;
Park, J ;
Yang, HN ;
Kim, H ;
Kim, S .
APPLIED PHYSICS LETTERS, 2003, 82 (25) :4564-4566
[2]   Nucleation conditions for catalyst-free GaN nanowires [J].
Bertness, K. A. ;
Roshko, A. ;
Mansfield, L. M. ;
Harvey, T. E. ;
Sanford, N. A. .
JOURNAL OF CRYSTAL GROWTH, 2007, 300 (01) :94-99
[3]   Growth mechanism of stacked-cone and smooth-surface GaN nanowires [J].
Cai, XM ;
Djurisic, AB ;
Xie, MH ;
Chiu, CS ;
Gwo, S .
APPLIED PHYSICS LETTERS, 2005, 87 (18) :1-3
[4]   Nanotips: Growth, model, and applications [J].
Chattopadhyray, Surojit ;
Chen, Li-Chyrong ;
Chen, Kuei-Hsien .
CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2006, 31 (1-2) :15-53
[5]   Different growth rates for catalyst-induced and self-induced GaN nanowires [J].
Cheze, C. ;
Geelhaar, L. ;
Jenichen, B. ;
Riechert, H. .
APPLIED PHYSICS LETTERS, 2010, 97 (15)
[6]   Various one-dimensional GaN nanostructures formed by non-catalytic routes [J].
Choi, Heon-Jin ;
Kim, Dae-Hee ;
Kim, Tae-Geun ;
Lee, Jung-Chul ;
Sung, Yun-Mo .
JOURNAL OF ELECTROCERAMICS, 2006, 17 (2-4) :221-225
[7]   Physical origin of the incubation time of self-induced GaN nanowires [J].
Consonni, V. ;
Trampert, A. ;
Geelhaar, L. ;
Riechert, H. .
APPLIED PHYSICS LETTERS, 2011, 99 (03)
[8]   Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC [J].
Davydov, VY ;
Averkiev, NS ;
Goncharuk, IN ;
Nelson, DK ;
Nikitina, IP ;
Polkovnikov, AS ;
Smirnov, AN ;
Jacobsen, MA ;
Semchinova, OK .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (10) :5097-5102
[9]   Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography [J].
Deb, P ;
Kim, H ;
Rawat, V ;
Oliver, M ;
Kim, S ;
Marshall, M ;
Stach, E ;
Sands, T .
NANO LETTERS, 2005, 5 (09) :1847-1851
[10]  
Dhara S, 2011, NANOWIRES - IMPLEMENTATIONS AND APPLICATIONS, P3