Physiological and molecular responses of wheat plants to mycorrhizal and epibrassinolide interactions under salinity

被引:3
|
作者
Tofighi, Cobra [1 ]
Khavari-Nejad, Ramazan Ali [1 ,2 ]
Najafi, Farzaneh [1 ]
Razavi, Khadijeh [3 ]
Rejali, Farhad [4 ]
机构
[1] Kharazmi Univ, Fac Biol Sci, Dept Plant Sci, Tehran 1571914911, Iran
[2] Islamic Azad Univ, Sci & Res Branch, Fac Basic Sci, Dept Biol, Tehran, Iran
[3] Natl Inst Genet Engn & Biotechnol, Tehran, Iran
[4] Agr Res Educ & Extens Org, Soil & Water Res Inst, Imam Khomeini Blv, Meshkindasht, Karaj, Iran
来源
PLANT BIOSYSTEMS | 2021年 / 155卷 / 05期
关键词
Triticum aestivum; Glomus mosseae; brassinosteroids; salinity; Na plus; H plus antiporter; SALT-STRESS; ARABIDOPSIS-THALIANA; EXPRESSION; TOLERANCE; BRASSINOSTEROIDS; TOMATO; FUNGI; L; GENE;
D O I
10.1080/11263504.2020.1829727
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity is a major constraint on plant growth and metabolism. This work was carried out to study the possible responses of wheat (Triticum aestivumL.) plants to 24-epibrassinolide (EBL) and the arbuscular mycorrhizal (AM) fungus,Glomus mosseae,supplied alone or in combination under salt stress. Plants were leaf sprayed with 5 mu M EBL, and then were treated with 0 and 150 mM NaCl for 10 days. Then plants were harvested for biochemical and gene expression (Real-time PCR) analyses involved. All data were analyzed by SPSS v.18 and the treatment means were compared by using Duncan's test atP < 0.05 level of significance. The findings showed improved protein biosynthesis, K(+)accumulation and K+/Na(+)ratio in shoots as well as reduced Na(+)levels in shoots and roots when EBL andG. mosseaewere applied together under saline conditions. In addition, the expression of theNHX1gene was up-regulated in EBL and AM fungi treatments and their interactions compared to control plants under salinity, however, no differences were found when compared with single applications. These results point to the possibility that BRs and AM fungi may have potential in alleviating salt stress by maintaining ion homeostasis in cells and modulating Na+/H(+)antiporters.
引用
收藏
页码:1075 / 1080
页数:6
相关论文
共 50 条
  • [41] Antioxidant responses of wheat plants under stress
    Caverzan, Andreia
    Casassola, Alice
    Brammer, Sandra Patussi
    GENETICS AND MOLECULAR BIOLOGY, 2016, 39 (01) : 1 - 6
  • [42] Selenium improves physiological responses and nutrient absorption in wheat (Triticum aestivum L.) grown under salinity
    Atarodi, Basir
    Fotovat, Amir
    Khorassani, Reza
    Keshavarz, Payman
    Hawrylak-Nowak, Barbara
    TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY, 2018, 100 (04): : 440 - 451
  • [43] Effects of salinity on physiological and molecular responses in extremophilic green algae
    Pritchard, JR
    Boettcher, A
    Major, K
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2004, 44 (06) : 738 - 738
  • [44] Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses
    Chourasia, Kumar Nishant
    Lal, Milan Kumar
    Tiwari, Rahul Kumar
    Dev, Devanshu
    Kardile, Hemant Balasaheb
    Patil, Virupaksh U.
    Kumar, Amarjeet
    Vanishree, Girimalla
    Kumar, Dharmendra
    Bhardwaj, Vinay
    Meena, Jitendra Kumar
    Mangal, Vikas
    Shelake, Rahul Mahadev
    Kim, Jae-Yean
    Pramanik, Dibyajyoti
    LIFE-BASEL, 2021, 11 (06):
  • [45] The interactions of iron nutrition, salinity and ultraviolet-B radiation on the physiological responses of wheat (Triticum aestivum L.)
    Wong, Hwei M.
    Hofmann, Rainer W.
    Reichman, Suzie M.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 207
  • [46] Interactions and physiological effects of diazotrophic bacteria and arbuscular mycorrhizal fungi in cassava plants
    Balota, EL
    Lopes, ES
    Hungria, M
    Dobereiner, J
    PESQUISA AGROPECUARIA BRASILEIRA, 1995, 30 (11) : 1335 - 1345
  • [47] Physiological and biochemical responses of citrus rootstocks under salinity stress
    Singh, Anshuman
    Prakash, Jai
    Srivastav, Manish
    Singh, S. K.
    Awasthi, O. P.
    Singh, A. K.
    Chaudhari, S. K.
    Sharma, D. K.
    INDIAN JOURNAL OF HORTICULTURE, 2014, 71 (02) : 162 - 167
  • [48] Physiological and molecular insights on wheat responses to heat stress
    Lal, Milan Kumar
    Tiwari, Rahul Kumar
    Gahlaut, Vijay
    Mangal, Vikas
    Kumar, Awadhesh
    Singh, Madan Pal
    Paul, Vijay
    Kumar, Sudhir
    Singh, Brajesh
    Zinta, Gaurav
    PLANT CELL REPORTS, 2022, 41 (03) : 501 - 518
  • [49] Growth and physiological responses of Phaseolus spp. under salinity
    Bahena Betancourt, Leobardo
    Macias Rodriguez, Lourdes
    Lopez Gomez, Rodolfo
    Bayuelo Jimenez, Jeannette S.
    REVISTA FITOTECNIA MEXICANA, 2008, 31 (03) : 213 - 223
  • [50] Physiological and Molecular Responses of Wheat to Low Light Intensity
    Li, Xiu
    Yang, Rui
    Li, Liulong
    Liu, Ke
    Harrison, Matthew Tom
    Fahad, Shah
    Wei, Mingmei
    Yin, Lijun
    Zhou, Meixue
    Wang, Xiaoyan
    AGRONOMY-BASEL, 2023, 13 (01):