A generalization of Kneser's Addition Theorem

被引:26
作者
De Vos, Matt [1 ]
Goddyn, Luis [1 ]
Mohar, Bojan [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Kneser's Addition Theorem; Cauchy-Davenport theorem; Erdos-Ginzburg-Ziv theorem; Matroid; Sumset; Group; Additive number theory; GINZBURG; NUMBER; ERDOS;
D O I
10.1016/j.aim.2008.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = (A(1),..., A(m)) be a sequence of finite subsets from an additive abelian group G. Let Sigma(l) (A) denote the set of all group elements representable as a sun, of l elements from distinct terms of A, and set H = stab(Sigma(l)(A)) = {g is an element of G: g + Sigma(l)(A) = Sigma(l)(A)}. Our main theorem is the following lower bound: vertical bar Sigma(l)(A)vertical bar >=vertical bar H vertical bar(1 - l + Sigma(Q is an element of G/H) min {l,vertical bar{i is an element of {1,....m}: A(i) boolean AND Q not equal empty set}vertical bar}). In the special case when m = l = 2, this is equivalent to Kneser's Addition Theorem. and indeed we obtain a new proof of this result. The special case when every A(i) has size one is a new result concerning subsequence sums which extends some recent work of Bollobas-Leader, Hamidoune, Hamidoune-Ordaz-Ortuno, Grynkiewicz. and Gao, and resolves two recent conjectures of Gao, Thangadurai, and Zhuang. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1531 / 1548
页数:18
相关论文
共 20 条
[1]   ON THE ERDOS-GINZBURG-ZIV THEOREM AND THE RAMSEY NUMBERS FOR STARS AND MATCHINGS [J].
BIALOSTOCKI, A ;
DIERKER, P .
DISCRETE MATHEMATICS, 1992, 110 (1-3) :1-8
[2]  
Bialostocki A., 1990, CONGR NUMER CONF J N, V70, P119
[3]   The number of k-sums modulo k [J].
Bollobás, B ;
Leader, I .
JOURNAL OF NUMBER THEORY, 1999, 78 (01) :27-35
[4]  
Cao HQ, 2006, ELECTRON J COMB, V13
[5]  
CAUCHY A, 1813, J ECOLE POLYTECHNIQU, V9, P99
[6]  
Davenport H., 1935, J LONDON MATH SOC, V10, P30
[7]  
ERDOS P, 1961, B RES COUNC ISRAEL, VF 10, P41
[8]   ON ZERO-TREES [J].
FUREDI, Z ;
KLEITMAN, DJ .
JOURNAL OF GRAPH THEORY, 1992, 16 (02) :107-120
[9]   Addition theorems on the cyclic groups of order pl [J].
Gao, W. D. ;
Thangadurai, R. ;
Zhuang, J. .
DISCRETE MATHEMATICS, 2008, 308 (10) :2030-2033
[10]   A combinatorial problem on finite Abelian groups [J].
Gao, WD .
JOURNAL OF NUMBER THEORY, 1996, 58 (01) :100-103