HAMILTONIAN NEURAL NETWORK-BASED ORTHOGONAL FILTERS A Basis for Artificial Intelligence

被引:0
作者
Citko, Wieslaw [1 ]
Sienko, Wieslaw [1 ]
机构
[1] Gdynia Maritime Univ, Dept Elect Engn, Morska 81-86, PL-81225 Gdynia, Poland
来源
NCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NEURAL COMPUTATION THEORY AND APPLICATIONS | 2011年
关键词
Hamiltonian neural network; Machine learning; Artificial intelligence;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of the paper is to present how very large scale networks for learning can be designed by using Hamiltonian Neural Network-based orthogonal filters and in particular by using octonionic modules. We claim here that octonionic modules are basic building blocks to implement AI compatible processors.
引用
收藏
页码:124 / 127
页数:4
相关论文
共 6 条
[1]  
Basu A, 2010, P IEEE T CAS, V57
[2]  
Evgeniou T, 2000, ADV NEUR IN, P171
[3]   Quantum Computers: A Status Update [J].
Gea-Banacloche, Julio .
PROCEEDINGS OF THE IEEE, 2010, 98 (12) :1983-1985
[4]  
Hooft G., 2000, ARXIVHEPTH0003005V2, P16
[5]  
Sienko W., 2009, MACH LEARN, P75
[6]   The Brain of a New Machine [J].
Versace, Massimiliano ;
Chandler, Ben .
IEEE SPECTRUM, 2010, 47 (12) :30-37