Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0

被引:112
作者
Fuhrer, Oliver [1 ]
Chadha, Tarun [2 ]
Hoefler, Torsten [3 ]
Kwasniewski, Grzegorz [3 ]
Lapillonne, Xavier [1 ]
Leutwyler, David [4 ]
Luthi, Daniel [4 ]
Osuna, Carlos [1 ]
Schar, Christoph [4 ]
Schulthess, Thomas C. [5 ,6 ]
Vogt, Hannes [6 ]
机构
[1] MeteoSwiss, Fed Inst Meteorol & Climatol, Zurich, Switzerland
[2] Swiss Fed Inst Technol, ITS Res Informat, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Scalable Parallel Comp Lab, Zurich, Switzerland
[4] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[5] Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland
[6] CSCS, Swiss Natl Supercomp Ctr, Lugano, Switzerland
基金
瑞士国家科学基金会;
关键词
NUMERICAL WEATHER PREDICTION; MODEL; MESOCYCLONES; FUTURE; SCHEME;
D O I
10.5194/gmd-11-1665-2018
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The best hope for reducing long-standing global climate model biases is by increasing resolution to the kilometer scale. Here we present results from an ultrahigh-resolution non-hydrostatic climate model for a near-global setup running on the full Piz Daint supercomputer on 4888 GPUs (graphics processing units). The dynamical core of the model has been completely rewritten using a domain-specific language (DSL) for performance portability across different hardware architectures. Physical parameterizations and diagnostics have been ported using compiler directives. To our knowledge this represents the first complete atmospheric model being run entirely on accelerators on this scale. At a grid spacing of 930m (1.9 km), we achieve a simulation throughput of 0.043 (0.23) simulated years per day and an energy consumption of 596 MWh per simulated year. Furthermore, we propose a new memory usage efficiency (MUE) metric that considers how efficiently the memory bandwidth - the dominant bottleneck of climate codes - is being used.
引用
收藏
页码:1665 / 1681
页数:17
相关论文
共 72 条
[1]  
Alverson B., 2012, TECH REP
[2]  
[Anonymous], 1981, P 13 ACM S THEOR COM, DOI DOI 10.1145/800076.802486
[3]  
[Anonymous], 9 COSMO
[4]  
[Anonymous], 2016, P PLATF ADV SCI COMP
[5]  
[Anonymous], CORR
[6]  
[Anonymous], P INT C HIGH PERF CO
[7]  
[Anonymous], 2009, METIS UNSTRUCTURED G
[8]  
Arge L., 2010, 24 INT PARALLEL DIST, P1
[9]   CPMIP: measurements of real computational performance of Earth system models in CMIP6 [J].
Balaji, Venkatramani ;
Maisonnave, Eric ;
Zadeh, Niki ;
Lawrence, Bryan N. ;
Biercamp, Joachim ;
Fladrich, Uwe ;
Aloisio, Giovanni ;
Benson, Rusty ;
Caubel, Arnaud ;
Durachta, Jeffrey ;
Foujols, Marie-Alice ;
Lister, Grenville ;
Mocavero, Silvia ;
Underwood, Seth ;
Wright, Garrett .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (01) :19-34
[10]   Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities [J].
Baldauf, Michael ;
Seifert, Axel ;
Foerstner, Jochen ;
Majewski, Detlev ;
Raschendorfer, Matthias ;
Reinhardt, Thorsten .
MONTHLY WEATHER REVIEW, 2011, 139 (12) :3887-3905