On a diophantine equation of Cassels

被引:5
作者
Luca, F.
Walsh, P. G.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
关键词
D O I
10.1017/S001708950500251X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
fJWS. Cassels gave a solution to the problem of determining all instances of the sum of three consecutive cubes being a square. This amounts to finding all integer solutions to the Diophantine equation y(2) = 3x(x(2) + 2). We describe an alternative approach to solving not only this equation, but any equation of the type y(2) = nx(x(2) + 2), with n a natural number. Moreover, we provide an explicit upper bound for the number of solutions of such Diophantine equations. The method we present uses the ingenious work of Wilhelm Ljunggren, and a recent improvement by the authors.
引用
收藏
页码:303 / 307
页数:5
相关论文
共 7 条
  • [1] Lucas' square pyramid problem revisited
    Bennett, MA
    [J]. ACTA ARITHMETICA, 2002, 105 (04) : 341 - 347
  • [2] CASSELS J, 1985, GLASGOW MATH J, V27, P11
  • [3] LJUNGGREN W, 1953, SKAND MATEMHEIKERKON, P188
  • [4] LJUNGGREN W, 1936, EINIGE EIGENSCHAFTEN
  • [5] Squares in Lehmer sequences and some Diophantine applications
    Luca, F
    Walsh, PG
    [J]. ACTA ARITHMETICA, 2001, 100 (01) : 47 - 62
  • [6] WALSH PG, 1998, C R MATH ACAD SCI SO, V20, P113
  • [7] WALSH PG, 2002, NUMBER THEORY MILLEN, V1