Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation

被引:89
作者
Rauscher, Garth H. [1 ]
Kresovich, Jacob K. [1 ]
Poulin, Matthew [2 ]
Yan, Liying [2 ]
Macias, Virgilia [3 ]
Mahmoud, Abeer M. [3 ]
Al-Alem, Umaima [1 ]
Kajdacsy-Balla, Andre [3 ]
Wiley, Elizabeth L. [3 ]
Tonetti, Debra [4 ]
Ehrlich, Melanie [5 ,6 ]
机构
[1] Univ Illinois, Div Epidemiol & Biostat, Sch Publ Hlth, Chicago, IL 60612 USA
[2] EpigenDx Inc, Hopkinton, MA USA
[3] Univ Illinois, Dept Pathol, Chicago, IL 60612 USA
[4] Univ Illinois, Dept Biopharmaceut Sci, Chicago, IL 60612 USA
[5] Tulane Univ, Human Genet Program, Tulane Canc Ctr, Hlth Sci Ctr, New Orleans, LA 70112 USA
[6] Tulane Univ, Ctr Bioinformat & Genom, Hlth Sci Ctr, New Orleans, LA 70112 USA
关键词
Breast cancer; DNA methylation; Hypomethylation; Hypermethylation; Pyrosequencing; Tumor suppressor genes; Field effect; TCGA database; Transcriptome; Histone modifications; CPG-ISLAND METHYLATION; SPORADIC BREAST; GENE-EXPRESSION; TUMOR-SUPPRESSOR; ADENOMATOUS POLYPOSIS; TREFOIL FACTOR-1; NORMAL-TISSUES; HYPERMETHYLATION; HYPOMETHYLATION; IDENTIFICATION;
D O I
10.1186/s12885-015-1777-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Breast cancer formation is associated with frequent changes in DNA methylation but the extent of very early alterations in DNA methylation and the biological significance of cancer-associated epigenetic changes need further elucidation. Methods: Pyrosequencing was done on bisulfite-treated DNA from formalin-fixed, paraffin-embedded sections containing invasive tumor and paired samples of histologically normal tissue adjacent to the cancers as well as control reduction mammoplasty samples from unaffected women. The DNA regions studied were promoters (BRCA1, CD44, ESR1, GSTM2, GSTP1, MAGEA1, MSI1, NFE2L3, RASSF1A, RUNX3, SIX3 and TFF1), far-upstream regions (EN1, PAX3, PITX2, and SGK1), introns (APC, EGFR, LHX2, RFX1 and SOX9) and the LINE-1 and satellite 2 DNA repeats. These choices were based upon previous literature or publicly available DNA methylome profiles. The percent methylation was averaged across neighboring CpG sites. Results: Most of the assayed gene regions displayed hypermethylation in cancer vs. adjacent tissue but the TFF1 and MAGEA1 regions were significantly hypomethylated (p = 0.001). Importantly, six of the 16 regions examined in a large collection of patients (105 - 129) and in 15-18 reduction mammoplasty samples were already aberrantly methylated in adjacent, histologically normal tissue vs. non-cancerous mammoplasty samples (p <= 0.01). In addition, examination of transcriptome and DNA methylation databases indicated that methylation at three non-promoter regions (far-upstream EN1 and PITX2 and intronic LHX2) was associated with higher gene expression, unlike the inverse associations between cancer DNA hypermethylation and cancer-altered gene expression usually reported. These three non-promoter regions also exhibited normal tissue-specific hypermethylation positively associated with differentiation-related gene expression (in muscle progenitor cells vs. many other types of normal cells). The importance of considering the exact DNA region analyzed and the gene structure was further illustrated by bioinformatic analysis of an alternative promoter/intron gene region for APC. Conclusions: We confirmed the frequent DNA methylation changes in invasive breast cancer at a variety of genome locations and found evidence for an extensive field effect in breast cancer. In addition, we illustrate the power of combining publicly available whole-genome databases with a candidate gene approach to study cancer epigenetics.
引用
收藏
页数:15
相关论文
共 66 条
[1]   Silencing of tumor suppressor genes RASSF1A, SLIT2, and WIF1 by promoter hypermethylation in hereditary breast cancer [J].
Alvarez, Carolina ;
Tapia, Teresa ;
Cornejo, Valeria ;
Fernandez, Wanda ;
Munoz, Alex ;
Camus, Mauricio ;
Alvarez, Manuel ;
Devoto, Luigi ;
Carvallo, Pilar .
MOLECULAR CARCINOGENESIS, 2013, 52 (06) :475-487
[2]   Differential methylation relative to breast cancer subtype and matched normal tissue reveals distinct patterns [J].
Bardowell, Sabrina A. ;
Parker, Joel ;
Fan, Cheng ;
Crandell, Jamie ;
Perou, Charles M. ;
Swift-Scanlan, Theresa .
BREAST CANCER RESEARCH AND TREATMENT, 2013, 142 (02) :365-380
[3]   Novel role of Engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function [J].
Beltran, A. S. ;
Graves, L. M. ;
Blancafort, P. .
ONCOGENE, 2014, 33 (39) :4767-4777
[4]   Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains [J].
Berman, Benjamin P. ;
Weisenberger, Daniel J. ;
Aman, Joseph F. ;
Hinoue, Toshinori ;
Ramjan, Zachary ;
Liu, Yaping ;
Noushmehr, Houtan ;
Lange, Christopher P. E. ;
van Dijk, Cornelis M. ;
Tollenaar, Rob A. E. M. ;
Van den Berg, David ;
Laird, Peter W. .
NATURE GENETICS, 2012, 44 (01) :40-U62
[5]   Deficiency in trefoil factor 1 (TFF1) increases tumorigenicity of human breast cancer cells and mammary tumor development in TFF1-knockout mice [J].
Buache, E. ;
Etique, N. ;
Alpy, F. ;
Stoll, I. ;
Muckensturm, M. ;
Reina-San-Martin, B. ;
Chenard, M. P. ;
Tomasetto, C. ;
Rio, M. C. .
ONCOGENE, 2011, 30 (29) :3261-3273
[6]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[7]  
Cho YH, 2010, ANTICANCER RES, V30, P2489
[8]   Breast Cancer DNA Methylation Profiles Are Associated with Tumor Size and Alcohol and Folate Intake [J].
Christensen, Brock C. ;
Kelsey, Karl T. ;
Zheng, Shichun ;
Houseman, E. Andres ;
Marsit, Carmen J. ;
Wrensch, Margaret R. ;
Wiemels, Joseph L. ;
Nelson, Heather H. ;
Karagas, Margaret R. ;
Kushi, Lawrence H. ;
Kwan, Marilyn L. ;
Wiencke, John K. .
PLOS GENETICS, 2010, 6 (07) :1-10
[9]   Aberrant CpG-island methylation has non-random and tumour-type-specific patterns [J].
Costello, JF ;
Frühwald, MC ;
Smiraglia, DJ ;
Rush, LJ ;
Robertson, GP ;
Gao, X ;
Wright, FA ;
Feramisco, JD ;
Peltomäki, P ;
Lang, JC ;
Schuller, DE ;
Yu, L ;
Bloomfield, CD ;
Caligiuri, MA ;
Yates, A ;
Nishikawa, R ;
Huang, HJS ;
Petrelli, NJ ;
Zhang, XL ;
O'Dorisio, MS ;
Held, WA ;
Cavenee, WK ;
Plass, C .
NATURE GENETICS, 2000, 24 (02) :132-138
[10]  
Dammann R, 2001, CANCER RES, V61, P3105