Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping

被引:138
作者
Pomeroy, J. W. [1 ]
Bernardoni, M. [1 ]
Dumka, D. C. [2 ]
Fanning, D. M. [2 ]
Kuball, M. [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] TriQuint Semicond Inc, Richardson, TX 75080 USA
关键词
BOUNDARY RESISTANCE; ALGAN/GAN HEMTS; CONDUCTIVITY; TEMPERATURE;
D O I
10.1063/1.4865583
中图分类号
O59 [应用物理学];
学科分类号
摘要
In order to achieve ultra-high radio frequency output power densities in GaN-based transistors new thermal management solutions must be developed for efficient heat extraction, including the use of high thermal conductivity substrates. Integration of GaN devices with the highest thermal conductivity material available, diamond, instead of the standard GaN-on-SiC, can lead to a substantial reduction in device thermal resistance. Current GaN-on-diamond transistors are shown to result in a 40% reduction in peak channel temperature when benchmarked against equivalent GaN-on-SiC transistors, with the potential for even further reductions through optimization. In order to understand the contribution of substrate and GaN/substrate interface to the device thermal resistance, a 3D Raman thermography mapping and modelling approach has been developed. The GaN/diamond interface thermal resistance is found to have the largest contribution to the thermal resistance of current GaN-on-diamond devices. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 21 条
[1]   SPATIALLY RESOLVED RAMAN STUDIES OF DIAMOND FILMS GROWN BY CHEMICAL VAPOR-DEPOSITION [J].
AGER, JW ;
VEIRS, DK ;
ROSENBLATT, GM .
PHYSICAL REVIEW B, 1991, 43 (08) :6491-6499
[2]   Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films [J].
Angadi, Maki A. ;
Watanabe, Taku ;
Bodapati, Arun ;
Xiao, Xingcheng ;
Auciello, Orlando ;
Carlisle, John A. ;
Eastman, Jeffrey A. ;
Keblinski, Pawel ;
Schelling, Patrick K. ;
Phillpot, Simon R. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
[3]   Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy [J].
Batten, T. ;
Pomeroy, J. W. ;
Uren, M. J. ;
Martin, T. ;
Kuball, M. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[4]   THERMAL-CONDUCTIVITY OF AMORPHOUS SOLIDS ABOVE THE PLATEAU [J].
CAHILL, DG ;
POHL, RO .
PHYSICAL REVIEW B, 1987, 35 (08) :4067-4073
[5]   Improved Thermal Interfaces of GaN-Diamond Composite Substrates for HEMT Applications [J].
Cho, Jungwan ;
Li, Zijian ;
Bozorg-Grayeli, Elah ;
Kodama, Takashi ;
Francis, Daniel ;
Ejeckam, Felix ;
Faili, Firooz ;
Asheghi, Mehdi ;
Goodson, Kenneth E. .
IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2013, 3 (01) :79-85
[6]   Optical, thermal and mechanical properties of CVD diamond [J].
Coe, SE ;
Sussmann, RS .
DIAMOND AND RELATED MATERIALS, 2000, 9 (9-10) :1726-1729
[7]  
Dumka D. C., 2013, P 34 ANN IEEE COMP S, P4
[8]   Improved thermal management for GaN power electronics: Silver diamond composite packages [J].
Faqir, M. ;
Batten, T. ;
Mrotzek, T. ;
Knippscheer, S. ;
Massiot, M. ;
Buchta, M. ;
Blanck, H. ;
Rochette, S. ;
Vendier, O. ;
Kuball, M. .
MICROELECTRONICS RELIABILITY, 2012, 52 (12) :3022-3025
[9]   Formation and characterization of 4-inch GaN-on-diamond substrates [J].
Francis, D. ;
Faili, F. ;
Babic, D. ;
Ejeckam, F. ;
Nurmikko, A. ;
Maris, H. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (2-3) :229-233
[10]   Self-heating in high-power AlGaN-GaN HFET's [J].
Gaska, R ;
Osinsky, A ;
Yang, JW ;
Shur, MS .
IEEE ELECTRON DEVICE LETTERS, 1998, 19 (03) :89-91