Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

被引:104
作者
Vaidya, V. D. [1 ]
Morrison, B. [1 ]
Helt, L. G. [1 ]
Shahrokshahi, R. [1 ]
Mahler, D. H. [1 ]
Collins, M. J. [1 ]
Tan, K. [1 ]
Lavoie, J. [1 ]
Repingon, A. [1 ]
Menotti, M. [1 ]
Quesada, N. [1 ]
Pooser, R. C. [2 ]
Lita, A. E. [3 ]
Gerrits, T. [3 ]
Nam, S. W. [3 ]
Vernon, Z. [1 ]
机构
[1] Xanadu, Toronto, ON M5G 2C8, Canada
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] NIST, 325 Broadway, Boulder, CO 80305 USA
关键词
PARAMETRIC OSCILLATION; SILICON-NITRIDE; PAIRS;
D O I
10.1126/sciadv.aba9186
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report demonstrations of both quadrature-squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition-edge sensors. We measure 1.0(1) decibels of broadband quadrature squeezing (similar to 4 decibels inferred on-chip) and 1.5(3) decibels of photon number difference squeezing (similar to 7 decibels inferred on-chip). Nearly single temporal mode operation is achieved, with measured raw unheralded second-order correlations g((2)) as high as 1.95(1). Multiphoton events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Using Gaussian Boson Sampling to Find Dense Subgraphs [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[2]   PULSED TWIN BEAMS OF LIGHT [J].
AYTUR, O ;
KUMAR, P .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1551-1554
[3]   Molecular docking with Gaussian Boson Sampling [J].
Banchi, Leonardo ;
Fingerhuth, Mark ;
Babej, Tomas ;
Ing, Christopher ;
Arrazola, Juan Miguel .
SCIENCE ADVANCES, 2020, 6 (23)
[4]  
Bradler K., 2018, ARXIV181010644QUANTP
[5]   Gaussian boson sampling for perfect matchings of arbitrary graphs [J].
Bradler, Kamil ;
Dallaire-Demers, Pierre-Luc ;
Rebentrost, Patrick ;
Su, Daiqin ;
Weedbrook, Christian .
PHYSICAL REVIEW A, 2018, 98 (03)
[6]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[7]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[8]  
Cernansky R., 2019, ARXIV190407283QUANTP
[9]   Probing multimode squeezing with correlation functions [J].
Christ, Andreas ;
Laiho, Kaisa ;
Eckstein, Andreas ;
Cassemiro, Katiuscia N. ;
Silberhorn, Christine .
NEW JOURNAL OF PHYSICS, 2011, 13
[10]   Engineering spectrally unentangled photon pairs from nonlinear microring resonators by pump manipulation [J].
Christensen, J. B. ;
Koefoed, J. G. ;
Rottwitt, K. ;
McKinstrie, C. J. .
OPTICS LETTERS, 2018, 43 (04) :859-862