Atomic scale mixing for inertial confinement fusion associated hydro instabilities

被引:7
|
作者
Melvin, J. [1 ]
Rao, P. [1 ]
Kaufman, R. [1 ]
Lim, H. [1 ]
Yu, Y. [1 ]
Glimm, J. [1 ]
Sharp, D. H. [2 ]
机构
[1] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Hydro instabilities; Inertial confinement fusion; SIMULATION; TRACKING;
D O I
10.1016/j.hedp.2013.01.007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Hydro instabilities have been identified as a potential cause of performance degradation in inertial confinement fusion (ICF) experiments. We study instabilities associated with a single Richtmyer-Meshkov (RM) interface in a circular geometry, idealized from an ICF geometry. In an ICF application, atomic level mix, as an input to nuclear burn, is an important, but difficult to compute, variable. We find numerical convergence for this important quantity, in a purely hydro study, with only a mild dependence on the Reynolds number of the flow, in the high Reynolds number limit We also find that mixing properties show a strong sensitivity to turbulent transport parameters; this sensitivity translates into an algorithmic dependence and a nonuniqueness of solutions for nominally converged solutions. It is thus a complication to any verification and validation program. To resolve the nonuniqueness of the solution, we propose a validation program with an extrapolation component, linking turbulent transport quantities in experimental regimes to mildly perturbed turbulent transport values in ICF Reynolds number regimes. In view of the observed solution nonuniqueness, the validation program and its justification from the results presented here, has a fundamental significance. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:288 / 296
页数:9
相关论文
共 50 条
  • [21] Inertial confinement fusion and prospects for power production
    C.B.Edwards
    C.N.Danson
    HighPowerLaserScienceandEngineering, 2015, 3 (01) : 36 - 43
  • [22] Modelling of Silicon in inertial confinement fusion conditions
    Hill, E. G.
    Rose, S. J.
    HIGH ENERGY DENSITY PHYSICS, 2012, 8 (04) : 307 - 312
  • [23] Implosion hydrodynamics of an inertial confinement fusion target
    Saillard, Y
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2000, 1 (06): : 705 - 718
  • [24] Fast ignition of inertial confinement fusion targets
    S. Yu. Gus’kov
    Plasma Physics Reports, 2013, 39 : 1 - 50
  • [25] Transport Properties of Inertial Confinement Fusion Plasmas
    Issanova, M. K.
    Kodanova, S. K.
    Ramazanov, T. S.
    Hoffmann, D. H. H.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (05) : 425 - 431
  • [26] TRANSMUTATION OF SR-90 BY INERTIAL CONFINEMENT FUSION
    TAKASHITA, H
    KONASHI, K
    FUSION TECHNOLOGY, 1993, 24 (03): : 269 - 276
  • [27] The emission of the electromagnetic modes in the inertial confinement fusion process
    Azadboni, F. Khodadadi
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (08) : 2485 - 2492
  • [28] The emission of the electromagnetic modes in the inertial confinement fusion process
    F. Khodadadi Azadboni
    Indian Journal of Physics, 2023, 97 : 2485 - 2492
  • [29] Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
    Frenje, J. A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (02)
  • [30] Thermodynamic properties of thermonuclear fuel in inertial confinement fusion
    Brandon, V.
    Canaud, B.
    Temporal, M.
    Ramis, R.
    LASER AND PARTICLE BEAMS, 2016, 34 (03) : 539 - 544