Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods

被引:27
作者
Aurada, Markus [1 ]
Feischl, Michael [1 ]
Fuehrer, Thomas [1 ]
Karkulik, Michael [2 ]
Praetorius, Dirk [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[2] Dept Matemat, Santiago, Chile
基金
奥地利科学基金会;
关键词
Boundary Element Method; Weakly-Singular Integral Equation; A Posteriori Error Estimate; Adaptive Algorithm; Convergence; Optimality;
D O I
10.1515/cmam-2013-0010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove convergence and quasi-optimality of a lowest-order adaptive boundary element method for a weakly-singular integral equation in 2D. The adaptive mesh-refinement is driven by the weighted-residual error estimator. By proving that this estimator is not only reliable, but under some regularity assumptions on the given data also efficient on locally refined meshes, we characterize the approximation class in terms of the Galerkin error only. In particular, this yields that no adaptive strategy can do better, and the weighted-residual error estimator is thus an optimal choice to steer the adaptive mesh-refinement. As a side result, we prove a weak form of the saturation assumption.
引用
收藏
页码:305 / 332
页数:28
相关论文
共 30 条
  • [1] EACH H1/2-STABLE PROJECTION YIELDS CONVERGENCE AND QUASI-OPTIMALITY OF ADAPTIVE FEM WITH INHOMOGENEOUS DIRICHLET DATA IN Rd
    Aurada, M.
    Feischl, M.
    Kemetmueller, J.
    Page, M.
    Praetorius, D.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (04): : 1207 - 1235
  • [2] Convergence of adaptive BEM for some mixed boundary value problem
    Aurada, M.
    Ferraz-Leite, S.
    Goldenits, P.
    Karkulik, M.
    Mayr, M.
    Praetorius, D.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 226 - 245
  • [3] AURADA M., 2012, 072012 ASC VIENN U T
  • [4] Aurada M., 2011, 242011 ASC VIENN U T
  • [5] Estimator reduction and convergence of adaptive BEM
    Aurada, Markus
    Ferraz-Leite, Samuel
    Praetorius, Dirk
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (06) : 787 - 801
  • [6] Optimality of an adaptive finite element method for the p-Laplacian equation
    Belenki, Liudmila
    Diening, Lars
    Kreuzer, Christian
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (02) : 484 - 510
  • [7] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [8] CARSTENSEN C, 1995, MATH COMPUT, V64, P483, DOI 10.1090/S0025-5718-1995-1277764-7
  • [9] Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind
    Carstensen, C
    Praetorius, D
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) : 1226 - 1260
  • [10] A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation
    Carstensen, C
    Maischak, M
    Stephan, EP
    [J]. NUMERISCHE MATHEMATIK, 2001, 90 (02) : 197 - 213