Boundary feedback stabilization of the transmission problem of Naghdi's model

被引:17
作者
Chai, SG [1 ]
Liu, KS
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
Naghdi's model; transmission problem; boundary stabilization;
D O I
10.1016/j.jmaa.2005.08.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the stabilization of the transmission problem of Naghdi's model by boundary feedbacks where the model has a middle surface of any shape. The exponential decay rate for the problem is established under some checkable geometric conditions on the middle surface. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 20 条
[1]  
[Anonymous], HDB PHYS THEORY A
[2]   Boundary feedback stabilization of Naghdi's model [J].
Chai, SG .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (01) :169-184
[3]  
Chai SG, 2003, SCI CHINA SER A, V46, P300
[4]   Boundary feedback stabilization of shallow shells [J].
Chai, SG ;
Guo, YX ;
Yao, PF .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (01) :239-259
[5]   Boundary stabilization of Donnell's shallow circular cylindrical shell [J].
Chen, G ;
Coleman, MP ;
Liu, K .
JOURNAL OF SOUND AND VIBRATION, 1998, 209 (02) :265-298
[6]  
Horn MA, 1998, J MATH SYSTEMS ESTIM, V8, P1
[7]  
Komornik V., 1994, EXACT CONTROLLABILIT
[8]  
Lagnese J.E., 1989, BOUNDARY STABILIZATI
[9]   UNIFORM STABILIZATION OF THE WAVE-EQUATION WITH DIRICHLET OR NEUMANN FEEDBACK-CONTROL WITHOUT GEOMETRICAL CONDITIONS [J].
LASIECKA, I ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 25 (02) :189-224
[10]   Uniform stabilization of a shallow shell model with nonlinear boundary feedbacks [J].
Lasiecka, I ;
Triggiani, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) :642-688