Recent advances in the genetic regulation of the shape of simple leaves

被引:20
作者
Kim, GT [1 ]
Cho, KH
机构
[1] Dong A Univ, Div Mol Biotechnol, Pusan 604714, South Korea
[2] Gyeongsang Natl Univ, Environm Biotechnol Res Ctr, Jinju 660701, South Korea
关键词
D O I
10.1111/j.1399-3054.2005.00634.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Leaves are major photosynthetic organs, and their diverse shapes and sizes allow adaptation to the natural environment. The early control of leaf shape and size depends on the control of the rate and plane of cell division at the shoot apical meristem and the polarity-dependent cell differentiation in the leaf primordium. In this review, we first summarize knowledge regarding several genes that control the initial stages of leaf formation and leaf polarity (e.g. adaxial-abaxial polarity, symmetry, and flat morphology). Formation of the lateral leaf morphology involves co-ordination of the rates of division and enlargement of leaf cells. Thus, we also summarize information on a number of genes that control these stages of two-dimensional lateral leaf growth (e.g. polarized cell expansion, specific control of cell proliferation, and integration of cell proliferation and expansion). In addition, we discuss several recently identified microRNAs, which are important factors affecting the development of leaf shape via control of spatial and temporal expression of target gene families. We focus on the genetic regulation of leaf shape in the model plant Arabidopsis thaliana from the perspective of spatial and temporal balance among cell proliferation, enlargement, and differentiation, with special emphasis on the results of our own studies.
引用
收藏
页码:494 / 502
页数:9
相关论文
共 50 条
[1]   Phytocalpain controls the proliferation and differentiation fates of cells in plant organ development [J].
Ahn, JW ;
Kim, M ;
Lim, JH ;
Kim, GT ;
Pai, HS .
PLANT JOURNAL, 2004, 38 (06) :969-981
[2]   FROM CELL-GROWTH TO LEAF GROWTH .1. COUPLING CELL-DIVISION AND CELL EXPANSION [J].
ARKEBAUER, TJ ;
NORMAN, JM .
AGRONOMY JOURNAL, 1995, 87 (01) :99-105
[3]   An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation [J].
Azpiroz, R ;
Wu, YW ;
LoCascio, JC ;
Feldmann, KA .
PLANT CELL, 1998, 10 (02) :219-230
[4]   Establishment of polarity in angiosperm lateral organs [J].
Bowman, JL ;
Eshed, Y ;
Baum, SF .
TRENDS IN GENETICS, 2002, 18 (03) :134-141
[5]   Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis [J].
Byrne, ME ;
Barley, R ;
Curtis, M ;
Arroyo, JM ;
Dunham, M ;
Hudson, A ;
Martienssen, RA .
NATURE, 2000, 408 (6815) :967-971
[6]   Cyclin D control of growth rate in plants [J].
Cockcroft, CE ;
den Boer, BGW ;
Healy, JMS ;
Murray, JAH .
NATURE, 2000, 405 (6786) :575-579
[7]  
De Veylder L, 2001, PLANT CELL, V13, P1653, DOI 10.2307/3871392
[8]   Altered cell cycle distribution, hyperplasia, and inhibited differentiation in arabidopsis caused by the D-type cyclin CYCD3 [J].
Dewitte, W ;
Riou-Khamlichi, C ;
Scofield, S ;
Healy, JMS ;
Jacqmard, A ;
Kilby, NJ ;
Murray, JAH .
PLANT CELL, 2003, 15 (01) :79-92
[9]   Control of root growth and development by cyclin expression [J].
Doerner, P ;
Jorgensen, JE ;
You, R ;
Steppuhn, J ;
Lamb, C .
NATURE, 1996, 380 (6574) :520-523
[10]   Cell cycling and cell enlargement in developing leaves of Arabidopsis [J].
Donnelly, PM ;
Bonetta, D ;
Tsukaya, H ;
Dengler, RE ;
Dengler, NG .
DEVELOPMENTAL BIOLOGY, 1999, 215 (02) :407-419