Manipulation of the Geometry and Modulation of the Optical Response of Surfactant-Free Gold Nanostars: A Systematic Bottom-Up Synthesis

被引:87
作者
de Silva Indrasekara, Agampodi S. [1 ,2 ]
Johnson, Sean F. [1 ]
Odion, Ren A. [1 ,2 ]
Vo-Dinh, Tuan [1 ,2 ,3 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Fitzpatrick Inst Photon, Durham, NC 27708 USA
[3] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
美国国家卫生研究院;
关键词
PHOTOTHERMAL THERAPY; NANOPARTICLES; SPECTROSCOPY; ADSORPTION; RESONANCE; NANORODS;
D O I
10.1021/acsomega.7b01700
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Among plasmonic nanoparticles, surfactant-free branched gold nanoparticles have exhibited exceptional properties as a nanoplatform for a wide variety of applications ranging from surface-enhanced Raman scattering sensing and imaging applications to photothermal treatment and photo-immunotherapy for cancer treatments. The effectiveness and reliability of branched gold nanoparticles in biomedical applications strongly rely on the consistency and reproducibility of physical, chemical, optical, and therapeutic properties of nanoparticles, which are mainly governed by their morphological features. Herein, we present an optimized bottom-up synthesis that improves the reproducibility and homogeneity of the gold-branched nanoparticles with desired morphological features and optical properties. We identified that the order of reagent addition is crucial for improved homogeneity of the branched nature of nanoparticles that enable a high batch-to-batch reproducibility and reliability. In addition, a different combination of the synthesis parameters, in particular, additive halides and concentration ratios of reactive Au to Ag and Au to Au seeds, which yield branched nanoparticle of similar localized surface plasmon resonances but with distinguishable changes in the dimensions of the branches, was realized. Overall, our study introduces the design parameters for the purpose-tailored manufacturing of surfactant-free gold nanostars in a reliable manner.
引用
收藏
页码:2202 / 2210
页数:9
相关论文
共 52 条
[1]   Surface-Enhanced Raman Spectroscopy: A New Modality for Cancer Imaging [J].
Andreou, Chrysafis ;
Kishore, Sirish A. ;
Kircher, Moritz F. .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (09) :1295-1299
[2]  
[Anonymous], 2017, SCI REP
[3]   Tuning Size and Sensing Properties in Colloidal Gold Nanostars [J].
Barbosa, Silvia ;
Agrawal, Amit ;
Rodriguez-Lorenzo, Laura ;
Pastoriza-Santos, Isabel ;
Alvarez-Puebla, Raman A. ;
Kornowski, Andreas ;
Weller, Horst ;
Liz-Marzan, Luis M. .
LANGMUIR, 2010, 26 (18) :14943-14950
[4]   Nanogold: A Quantitative Phase Map [J].
Barnard, Amanda S. ;
Young, Neil P. ;
Kirkland, Angus I. ;
van Huis, Marijn A. ;
Xu, Huifang .
ACS NANO, 2009, 3 (06) :1431-1436
[5]   An improved synthesis of high-aspect-ratio gold nanorods [J].
Busbee, BD ;
Obare, SO ;
Murphy, CJ .
ADVANCED MATERIALS, 2003, 15 (05) :414-+
[6]   Manipulating the Anisotropic Structure of Gold Nanostars using Good's Buffers [J].
Chandra, Kavita ;
Culver, Kayla S. B. ;
Werner, Stephanie E. ;
Lee, Raymond C. ;
Odom, Ted W. .
CHEMISTRY OF MATERIALS, 2016, 28 (18) :6763-6769
[7]   Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents [J].
Chen, J ;
Saeki, F ;
Wiley, BJ ;
Cang, H ;
Cobb, MJ ;
Li, ZY ;
Au, L ;
Zhang, H ;
Kimmey, MB ;
Li, XD ;
Xia, YN .
NANO LETTERS, 2005, 5 (03) :473-477
[8]   Extinction Coefficient of Gold Nanostars [J].
de Puig, Helena ;
Tam, Justina O. ;
Yen, Chun-Wan ;
Gehrke, Lee ;
Hamad-Schifferli, Kimberly .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (30) :17408-17415
[9]   Optical properties of gold-silver iodide nanoparticle pair structures [J].
El-Kouedi, M ;
Foss, CA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (17) :4031-4037
[10]   Surface-enhanced Raman scattering spectroscopy via gold nanostars [J].
Esenturk, E. Nalbant ;
Walker, A. R. Hight .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (01) :86-91