Experimental evidence for superionic water ice using shock compression

被引:188
作者
Millot, Marius [1 ,2 ]
Hamel, Sebastien [1 ]
Rygg, J. Ryan [1 ,3 ,4 ,5 ]
Celliers, Peter M. [1 ]
Collins, Gilbert W. [1 ,3 ,4 ,5 ]
Coppari, Federica [1 ]
Fratanduono, Dayne E. [1 ]
Jeanloz, Raymond [2 ]
Swift, Damian C. [1 ]
Eggert, Jon H. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[3] Univ Rochester, Laser Energet Lab, Rochester, NY USA
[4] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA
[5] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
EQUATION-OF-STATE; HIGH-PRESSURE; ELECTRICAL-CONDUCTIVITY; PHASE-DIAGRAM; MELTING CURVE; H2O; TEMPERATURES; SCATTERING; AMMONIA; URANUS;
D O I
10.1038/s41567-017-0017-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In stark contrast to common ice, Ih, water ice at planetary interior conditions has been predicted to become superionic with fastdiffusing (that is, liquid-like) hydrogen ions moving within a solid lattice of oxygen. Likely to constitute a large fraction of icy giant planets, this extraordinary phase has not been observed in the laboratory. Here, we report laser-driven shock-compression experiments on water ice VII. Using time-resolved optical pyrometry and laser velocimetry measurements as well as supporting density functional theory-molecular dynamics (DFT-MD) simulations, we document the shock equation of state of H2O to unprecedented extreme conditions and unravel thermodynamic signatures showing that ice melts near 5,000 K at 190 GPa. Optical reflectivity and absorption measurements also demonstrate the low electronic conductivity of ice, which, combined with previous measurements of the total electrical conductivity under reverberating shock compression, provides experimental evidence for superionic conduction in water ice at planetary interior conditions, verifying a 30-year-old prediction.
引用
收藏
页码:297 / +
页数:9
相关论文
共 74 条
[61]   New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data [J].
Nettelmann, N. ;
Helled, R. ;
Fortney, J. J. ;
Redmer, R. .
PLANETARY AND SPACE SCIENCE, 2013, 77 :143-151
[62]   The C v for calculating the shock temperatures of water below 80 GPa [J].
Peng XiaoJuan ;
Liu FuSheng ;
Zhang ShiLai ;
Zhang MingJian ;
Jing FuQian .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (08) :1443-1446
[63]   The phase diagram of water and the magnetic fields of Uranus and Neptune [J].
Redmer, Ronald ;
Mattsson, Thomas R. ;
Nettelmann, Nadine ;
French, Martin .
ICARUS, 2011, 211 (01) :798-803
[64]   Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell [J].
Schwager, B ;
Chudinovskikh, L ;
Gavriliuk, A ;
Boehler, R .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (14) :S1177-S1179
[65]   Melting of ice under pressure [J].
Schwegler, Eric ;
Sharma, Manu ;
Gygi, Francois ;
Galli, Giulia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (39) :14779-14783
[66]   Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields [J].
Stanley, S ;
Bloxham, J .
NATURE, 2004, 428 (6979) :151-153
[67]   Experimental evidence of superionic conduction in H2O ice [J].
Sugimura, Emiko ;
Komabayashi, Tetsuya ;
Ohta, Kenji ;
Hirose, Kei ;
Ohishi, Yasuo ;
Dubrovinsky, Leonid S. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (19)
[68]   The phase diagram of high-pressure superionic ice [J].
Sun, Jiming ;
Clark, Bryan K. ;
Torquato, Salvatore ;
Car, Roberto .
NATURE COMMUNICATIONS, 2015, 6
[69]   INTERIOR STRUCTURE OF WATER PLANETS: IMPLICATIONS FOR THEIR DYNAMO SOURCE REGIONS [J].
Tian, Bob Yunsheng ;
Stanley, Sabine .
ASTROPHYSICAL JOURNAL, 2013, 768 (02)
[70]   Superionic to Superionic Phase Change in Water: Consequences for the Interiors of Uranus and Neptune [J].
Wilson, Hugh F. ;
Wong, Michael L. ;
Militzer, Burkhard .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)