3D Structures of Responsive Nanocompartmentalized Microgels

被引:85
作者
Gelissen, Arjan P. H. [1 ]
Oppermann, Alex [1 ]
Caumanns, Tobias [2 ]
Hebbeker, Pascal [1 ]
Turnhoff, Sarah K. [1 ]
Tiwari, Rahul [3 ]
Eisold, Sabine [4 ]
Simon, Ulrich [4 ]
Lu, Yan [5 ]
Mayer, Joachim [2 ]
Richtering, Walter [1 ]
Walther, Andreas [3 ]
Woell, Dominik [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys Chem, Landoltweg 2, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, GFE Cent Facil Electron Microscopy, Mies van der Rohe Str 59, D-52074 Aachen, Germany
[3] DWI Leibniz Inst Interact Mat, Forckenbeckstr 50, D-52074 Aachen, Germany
[4] Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52056 Aachen, Germany
[5] Helmholtz Zentrum Berlin Mat & Energie, Soft Matter & Funct Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany
关键词
Nanoscale soft materials; super-resolved localization microscopy; in situ transmission electron microscopy; cryogenic transmission electron microscopy; microgels; nanoparticles; ELECTRON-MICROSCOPY; LOCALIZATION;
D O I
10.1021/acs.nanolett.6b03940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multi functionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy. We unravel new levels of structural details and address the challenge of reconstructing 3D information from 2D projections for nonuniform soft matter as opposed to monodisperse proteins. Moreover, we visualize the thermally induced shrinkage of responsive core shell microgels live in water. This strategy opens doors for systematic in situ studies of soft matter systems and their application as smart materials.
引用
收藏
页码:7295 / 7301
页数:7
相关论文
共 35 条
[1]  
[Anonymous], 2008, ANGEW CHE
[2]   Structure of multiresponsive "intelligent" core-shell microgels [J].
Berndt, I ;
Pedersen, JS ;
Richtering, W .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (26) :9372-9373
[3]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[4]  
Brown AC, 2014, NAT MATER, V13, P1108, DOI [10.1038/nmat4066, 10.1038/NMAT4066]
[5]   Superresolution microscopy of the volume phase transition of pNIPAM microgels [J].
Conley, Gaurasundar M. ;
Nojd, Sofi ;
Braibanti, Marco ;
Schurtenberger, Peter ;
Scheffold, Frank .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 499 :18-23
[6]  
de Jonge N, 2011, NAT NANOTECHNOL, V6, P695, DOI [10.1038/NNANO.2011.161, 10.1038/nnano.2011.161]
[7]   Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters [J].
Egner, Alexander ;
Geisler, Claudia ;
Von Middendorff, Claas ;
Bock, Hannes ;
Wenzel, Dirk ;
Medda, Rebecca ;
Andresen, Martin ;
Stiel, Andre C. ;
Jakobs, Stefan ;
Eggeling, Christian ;
Schoenle, Andreas ;
Hell, Stefan W. .
BIOPHYSICAL JOURNAL, 2007, 93 (09) :3285-3290
[8]   Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry [J].
Gota, Chie ;
Okabe, Kohki ;
Funatsu, Takashi ;
Harada, Yoshie ;
Uchiyama, Seiichi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (08) :2766-+
[9]   Fluorescence imaging of nanoscale domains in polymer blends using stochastic optical reconstruction microscopy (STORM) [J].
Gramlich, M. W. ;
Bae, J. ;
Hayward, R. C. ;
Ross, J. L. .
OPTICS EXPRESS, 2014, 22 (07) :8438-8450
[10]   Guided hierarchical co-assembly of soft patchy nanoparticles [J].
Groeschel, Andre H. ;
Walther, Andreas ;
Loebling, Tina I. ;
Schacher, Felix H. ;
Schmalz, Holger ;
Mueller, Axel H. E. .
NATURE, 2013, 503 (7475) :247-+