The Incompressible Navier-Stokes System with Time-Dependent Robin-Type Boundary Conditions

被引:6
作者
Monniaux, Sylvie [1 ]
Ouhabaz, El Maati [2 ]
机构
[1] Aix Marseille Univ, I2M, Cent Marseille, UMR 7373, F-13453 Marseille, France
[2] Univ Bordeaux, CNRS UMR 5251, Inst Math Bordeaux IMB, F-33405 Bordeaux, France
关键词
Navier-Stokes system; Time-dependent boundary conditions; Non-autonomous maximal regularity; Boundary value problems; INITIAL-VALUE PROBLEM; LIPSCHITZ-DOMAINS; RIEMANNIAN-MANIFOLDS; MAXIMAL REGULARITY; EQUATIONS; ROUGHNESS; NONSMOOTH; OPERATOR; FORMS;
D O I
10.1007/s00021-015-0227-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the incompressible 3D Navier-Stokes system in a l(1,1) bounded domain or a bounded convex domain Omega with a non penetration condition nu.u = 0 at the boundary partial derivative Omega together with a time-dependent Robin boundary condition of the type nu x curl u = beta(t)u on partial derivative Omega admits a solution with enough regularity provided the initial condition is small enough in an appropriate functional space.
引用
收藏
页码:707 / 722
页数:16
相关论文
共 31 条
[11]   On Bogovskii and regularized Poincare integral operators for de Rham complexes on Lipschitz domains [J].
Costabel, Martin ;
McIntosh, Alan .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) :297-320
[12]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[13]   Relevance of the Slip Condition for Fluid Flows Near an Irregular Boundary [J].
Gerard-Varet, David ;
Masmoudi, Nader .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (01) :99-137
[14]   Maximal regularity for non-autonomous evolution equations [J].
Haak, Bernhard H. ;
Ouhabaz, El Maati .
MATHEMATISCHE ANNALEN, 2015, 363 (3-4) :1117-1145
[15]   On the roughness-induced effective boundary conditions for an incompressible viscous flow [J].
Jäger, W ;
Mikelic, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (01) :96-122
[16]  
Kato T., 1962, J MATH SOC JPN, V14, P242, DOI 10.2969/jmsj/01420242
[17]  
Lemarie-Rieusset P. G., 2002, CHAPMAN HALL CRC RES, V431
[18]  
Lions J.L., 1962, J MATH SOC JAPAN, V14, P233, DOI 10.2969/jmsj/01420233
[19]   Sharp hodge decompositions, Maxwell's equations, and vector poisson problems on nonsmooth, three-dimensional Riemannian manifolds [J].
Mitrea, M .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (03) :467-547
[20]   The regularity of the Stokes operator and the Fujita-Kato approach to the Navier-Stokes initial value problem in Lipschitz domains [J].
Mitrea, Marius ;
Monniaux, Sylvie .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) :1522-1574