Particle Swarm Optimization with pbest Crossover

被引:0
作者
Chen, Stephen [1 ]
机构
[1] York Univ, Sch Informat Technol, Toronto, ON M3J 2R7, Canada
来源
2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2012年
关键词
particle swarm optimization; crossover; multi-modal search spaces; exploration; exploitation; GLOBAL OPTIMIZATION; LOCUST SWARMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Particle swarm optimization can be viewed as a system with two populations: a population of current positions and a population of personal best attractors. In genetic algorithms, crossover is applied after selection - the goal is to create a new offspring solution using components from the best available solutions. In a particle swarm, the best available solutions are in the population of personal best attractors. Compared to standard particle swarm optimization, a modified version which periodically creates particle positions by crossing the personal best positions can achieve large improvements. These improvements are most consistent on multi-modal search spaces where the new crossover solutions may help the search process escape from local optima.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Arnold DV, 2002, IEEE T EVOLUT COMPUT, V6, P30, DOI [10.1109/4235.985690, 10.1023/A:1015059928466]
[2]   On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems [J].
Arumugam, M. Senthil ;
Rao, M. V. C. .
APPLIED SOFT COMPUTING, 2008, 8 (01) :324-336
[3]  
Röhler AB, 2011, LECT NOTES ARTIF INT, V7106, P271, DOI 10.1007/978-3-642-25832-9_28
[4]   Defining a standard for particle swarm optimization [J].
Bratton, Daniel ;
Kennedy, James .
2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, :120-+
[5]  
Brits R., 2002, P C SIM EV LEARN, P692
[6]  
Chen S, 2011, GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P53
[7]  
Chen S, 2011, LECT NOTES ARTIF INT, V7106, P281, DOI 10.1007/978-3-642-25832-9_29
[8]  
Chen S, 2009, LECT NOTES ARTIF INT, V5865, P211, DOI 10.1007/978-3-642-10427-5_21
[9]   Locust Swarms - A New Multi-Optima Search Technique [J].
Chen, Stephen .
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, :1745-1752
[10]  
El-Abd M., 2009, P 11 ANN C COMP GEN, P2269, DOI [10.1145/1570256.1570316, DOI 10.1145/1570256.1570316]