Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries

被引:0
|
作者
Gramfort, Alexandre [1 ,2 ,3 ]
Strohmeier, Daniel [4 ]
Haueisen, Jens [4 ,5 ,6 ]
Hamalainen, Matti [3 ]
Kowalski, Matthieu [7 ]
机构
[1] INRIA, Parietal Team, Saclay, France
[2] CEA Saclay, LNAO NeuroSpin, F-91191 Gif Sur Yvette, France
[3] Harvard Med Sch, Martinos Ctr, MGH Dept Radiol, Boston, MA 02115 USA
[4] Ilmenau Univ Technol, Inst Biomed Engn & Informat, Ilmenau, Germany
[5] Univ Hosp Jena, Biomagnet Ctr, Dept Neurol, Jena, Germany
[6] King Saud Univ, Dept Appl Med Sci, Riyadh, Saudi Arabia
[7] Lab Signaux & Syst L2S, F-91192 Gif Sur Yvette, France
来源
INFORMATION PROCESSING IN MEDICAL IMAGING | 2011年 / 6801卷
关键词
SOURCE RECONSTRUCTION; INVERSE PROBLEM; SHRINKAGE; PRIORS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While time-frequency analysis is often used in the field, it is not commonly employed in the context of the ill-posed inverse problem that maps the MEG and EEG measurements to the source space in the brain. In this work, we detail how convex structured sparsity can be exploited to achieve a principled and more accurate functional imaging approach. Importantly, time-frequency dictionaries can capture the non-stationary nature of brain signals and state-of-the-art convex optimization procedures based on proximal operators allow the derivation of a fast estimation algorithm. We compare the accuracy of our new method to recently proposed inverse solvers with help of simulations and analysis of real MEG data.
引用
收藏
页码:600 / 611
页数:12
相关论文
共 22 条