Functional Brain Imaging with M/EEG Using Structured Sparsity in Time-Frequency Dictionaries

被引:0
|
作者
Gramfort, Alexandre [1 ,2 ,3 ]
Strohmeier, Daniel [4 ]
Haueisen, Jens [4 ,5 ,6 ]
Hamalainen, Matti [3 ]
Kowalski, Matthieu [7 ]
机构
[1] INRIA, Parietal Team, Saclay, France
[2] CEA Saclay, LNAO NeuroSpin, F-91191 Gif Sur Yvette, France
[3] Harvard Med Sch, Martinos Ctr, MGH Dept Radiol, Boston, MA 02115 USA
[4] Ilmenau Univ Technol, Inst Biomed Engn & Informat, Ilmenau, Germany
[5] Univ Hosp Jena, Biomagnet Ctr, Dept Neurol, Jena, Germany
[6] King Saud Univ, Dept Appl Med Sci, Riyadh, Saudi Arabia
[7] Lab Signaux & Syst L2S, F-91192 Gif Sur Yvette, France
来源
INFORMATION PROCESSING IN MEDICAL IMAGING | 2011年 / 6801卷
关键词
SOURCE RECONSTRUCTION; INVERSE PROBLEM; SHRINKAGE; PRIORS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetoencephalography (MEG) and electroencephalography (EEG) allow functional brain imaging with high temporal resolution. While time-frequency analysis is often used in the field, it is not commonly employed in the context of the ill-posed inverse problem that maps the MEG and EEG measurements to the source space in the brain. In this work, we detail how convex structured sparsity can be exploited to achieve a principled and more accurate functional imaging approach. Importantly, time-frequency dictionaries can capture the non-stationary nature of brain signals and state-of-the-art convex optimization procedures based on proximal operators allow the derivation of a fast estimation algorithm. We compare the accuracy of our new method to recently proposed inverse solvers with help of simulations and analysis of real MEG data.
引用
收藏
页码:600 / 611
页数:12
相关论文
共 22 条
  • [1] M/EEG source localization with multi-scale time-frequency dictionaries
    Bekhti, Yousra
    Strohmeier, Daniel
    Jas, Mainak
    Badeau, Roland
    Gramfort, Alexandre
    2016 6TH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI), 2016, : 45 - 48
  • [2] Audio inpainting: Evaluation of time-frequency representations and structured sparsity approaches
    Lieb, Florian
    Stark, Hans-Georg
    SIGNAL PROCESSING, 2018, 153 : 291 - 299
  • [3] Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations
    Gramfort, A.
    Strohmeier, D.
    Haueisen, J.
    Haemaelaeinen, M. S.
    Kowalski, M.
    NEUROIMAGE, 2013, 70 : 410 - 422
  • [4] Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints
    Castano-Candamil, Sebastian
    Hoehne, Johannes
    Martinez-Vargas, Juan-David
    An, Xing-Wei
    Castellanos-Dominguez, German
    Haufe, Stefan
    NEUROIMAGE, 2015, 118 : 598 - 612
  • [5] INVERSE PROBLEMS WITH TIME-FREQUENCY DICTIONARIES AND NON-WHITE GAUSSIAN NOISE
    Kowalski, Matthieu
    Gramfort, Alexandre
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1741 - 1745
  • [6] Bayesian EEG source localization using a structured sparsity prior
    Costa, Facundo
    Batatia, Hadj
    Oberlin, Thomas
    D'Giano, Carlos
    Tourneret, Jean-Yves
    NEUROIMAGE, 2017, 144 : 142 - 152
  • [7] MEG/EEG source imaging with a non-convex penalty in the time-frequency domain
    Strohmeier, Daniel
    Gramfort, Alexandre
    Haueisen, Jens
    2015 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI) 2015, 2015, : 21 - 24
  • [8] EEG extended source imaging with structured sparsity and L1-norm residual
    Xu, Furong
    Liu, Ke
    Yu, Zhuliang
    Deng, Xin
    Wang, Guoyin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14) : 8513 - 8524
  • [9] A General Framework for Incorporating Time-Frequency Domain Sparsity in Multichannel Speech Dereverberation
    Jukic, Ante
    van Waterschoot, Toon
    Gerkmann, Timo
    Doclo, Simon
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2017, 65 (1-2): : 17 - 30
  • [10] MODULATION FILTERING FOR STRUCTURED TIME-FREQUENCY ESTIMATION OF AUDIO SIGNALS
    Siedenburg, Kai
    Depalle, Philippe
    2013 IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS (WASPAA), 2013,