Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls

被引:10
作者
Ikoma, Norihisa [1 ]
Ishii, Hitoshi [2 ,3 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Waseda Univ, Fac Educ & Integrated Arts & Sci, Dept Math, Shinjuku Ku, Tokyo 1698050, Japan
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2012年 / 29卷 / 05期
关键词
DIRICHLET PROBLEM; PRINCIPAL EIGENVALUES; EQUATIONS; OPERATORS; BIFURCATION;
D O I
10.1016/j.anihpc.2012.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction. (c) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:783 / 812
页数:30
相关论文
共 50 条
[41]   Mappings by the solutions of second-order elliptic equations [J].
Zaitsev, A. B. .
MATHEMATICAL NOTES, 2014, 95 (5-6) :642-655
[42]   Mappings by the solutions of second-order elliptic equations [J].
A. B. Zaitsev .
Mathematical Notes, 2014, 95 :642-655
[43]   SOBOLEV REGULARITY FOR A CLASS OF SECOND ORDER ELLIPTIC PDE'S IN INFINITE DIMENSION [J].
Da Prato, Giuseppe ;
Lunardi, Alessandra .
ANNALS OF PROBABILITY, 2014, 42 (05) :2113-2160
[44]   Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators [J].
Quaas, Alexander ;
Sirakov, Boyan .
ADVANCES IN MATHEMATICS, 2008, 218 (01) :105-135
[45]   GLOBAL SOLVABILITY OF DIRICHLET PROBLEM FOR FULLY NONLINEAR ELLIPTIC SYSTEMS [J].
Fattorusso, Luisa ;
Tarsia, Antonio .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (7-9) :1043-1065
[46]   A Study of Second Order Semilinear Elliptic Pde Involving Measures [J].
Giri, Ratan Kr ;
Choudhuri, Debajyoti .
FILOMAT, 2019, 33 (08) :2489-2506
[47]   On the fredholmness of the Dirichlet problem for a second-order elliptic equation in grand-Sobolev spaces [J].
Bilal Bilalov ;
Sabina Sadigova .
Ricerche di Matematica, 2024, 73 :283-322
[48]   Solvability of the dirichlet problem for a second-order elliptic equation with a boundary function from Lp [J].
A. K. Gushchin .
Doklady Mathematics, 2011, 83 :219-221
[49]   Solvability of the dirichlet problem for a second-order elliptic equation with a boundary function from Lp [J].
Gushchin, A. K. .
DOKLADY MATHEMATICS, 2011, 83 (02) :219-221
[50]   On the fredholmness of the Dirichlet problem for a second-order elliptic equation in grand-Sobolev spaces [J].
Bilalov, Bilal ;
Sadigova, Sabina .
RICERCHE DI MATEMATICA, 2024, 73 (01) :283-322