Solutions of associative Yang-Baxter equation and D-equation in low dimensions and associated Frobenius algebras and Connes cocycles

被引:1
作者
Hounkonnou, Mahouton Norbert [1 ]
Houndedji, Gbevewou Damien [1 ]
机构
[1] Univ Abomey Calavi, ICMPA, UNESCO Chair, 072 BP 50, Cotonou, Littoral, Benin
关键词
Associative algebra; Frobenius algebra; Connes cocycle; dendriform algebra; D-equation; Yang-Baxter equation; HOPF-ALGEBRAS; BIALGEBRAS; HOMOLOGY;
D O I
10.1142/S021949881850010X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we compute solutions of the Yang-Baxter associative equation in dimensions one and two. For these solutions, we describe the double constructions of the associated Frobenius algebras, following Bai's definitions. Besides, we determine related compatible dendriform algebras and solutions of their D-equations. Finally, using symmetric solutions of these equations, we build the double constructions of related Connes cocycles.
引用
收藏
页数:26
相关论文
共 35 条
[21]   Abridged English version [J].
Loday, JL ;
Ronco, M .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (03) :153-158
[22]   Hopf algebra of the planar binary trees [J].
Loday, JL ;
Ronco, MO .
ADVANCES IN MATHEMATICS, 1998, 139 (02) :293-309
[23]   Arithmetree [J].
Loday, JL .
JOURNAL OF ALGEBRA, 2002, 258 (01) :275-309
[24]   Dialgebras [J].
Loday, JL .
DIALGEBRAS AND RELATED OPERADS, 2001, 1763 :7-66
[25]  
Odesskii A., 2013, PREPRINT
[26]   Bi-Hamiltonian ordinary differential equations with matrix variables [J].
Odesskii, A. V. ;
Rubtsov, V. N. ;
Sokolov, V. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 171 (01) :442-447
[27]   Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations [J].
Odesskii, Alexander ;
Sokolov, Vladimir .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (01) :83-99
[28]   Double Poisson brackets on free associative algebras [J].
Odesskii, Alexander ;
Rubtsov, Vladimir ;
Sokolov, Vladimir .
NONCOMMUTATIVE BIRATIONAL GEOMETRY, REPRESENTATIONS AND COMBINATORICS, 2013, 592 :225-+
[29]  
Perk J. H. H., 2006, PREPRINT
[30]   Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras [J].
Ronco, M .
JOURNAL OF ALGEBRA, 2002, 254 (01) :152-172