Solutions of associative Yang-Baxter equation and D-equation in low dimensions and associated Frobenius algebras and Connes cocycles

被引:1
作者
Hounkonnou, Mahouton Norbert [1 ]
Houndedji, Gbevewou Damien [1 ]
机构
[1] Univ Abomey Calavi, ICMPA, UNESCO Chair, 072 BP 50, Cotonou, Littoral, Benin
关键词
Associative algebra; Frobenius algebra; Connes cocycle; dendriform algebra; D-equation; Yang-Baxter equation; HOPF-ALGEBRAS; BIALGEBRAS; HOMOLOGY;
D O I
10.1142/S021949881850010X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we compute solutions of the Yang-Baxter associative equation in dimensions one and two. For these solutions, we describe the double constructions of the associated Frobenius algebras, following Bai's definitions. Besides, we determine related compatible dendriform algebras and solutions of their D-equations. Finally, using symmetric solutions of these equations, we build the double constructions of related Connes cocycles.
引用
收藏
页数:26
相关论文
共 35 条
[11]  
Connes A., 1985, PUBL MATH IHES, V62, P41
[12]   New identities in dendriform algebras [J].
Ebrahimi-Fard, Kurusch ;
Manchon, Dominique ;
Patras, Frederic .
JOURNAL OF ALGEBRA, 2008, 320 (02) :708-727
[13]  
Foissy L, 2002, B SCI MATH, V126, P193, DOI 10.1016/S0007-4497(02)01113-2
[14]   Leibniz homology of dialgebras of matrices [J].
Frabetti, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (02) :123-141
[15]   Dialgebra homology of associative algebras [J].
Frabetti, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (02) :135-140
[16]   Comparison of Hopf algebras on trees [J].
Holtkamp, R .
ARCHIV DER MATHEMATIK, 2003, 80 (04) :368-383
[17]   On Hopf algebra structures over free operads [J].
Holtkamp, Ralf .
ADVANCES IN MATHEMATICS, 2006, 207 (02) :544-565
[18]  
JONI SA, 1979, STUD APPL MATH, V61, P93
[19]  
Kock Joachim, 2004, London Mathematical Society Student Texts, V59
[20]  
Loday J.-L., 2004, SEMIN C, V9, P155