Tidal deformations of a spinning compact object

被引:120
作者
Pani, Paolo [1 ,2 ,3 ]
Gualtieri, Leonardo [1 ,2 ]
Maselli, Andrea [4 ]
Ferrari, Valeria [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, PA Moro 5, I-00185 Rome, Italy
[2] Sez INFN Roma1, I-00185 Rome, Italy
[3] Univ Lisbon, Inst Super Tecn, Dept Fis, CENTRA, P-1049 Lisbon, Portugal
[4] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 02期
关键词
ROTATING RELATIVISTIC STARS; MULTIPOLE MOMENTS; NEUTRON-STARS; BLACK-HOLES; NONRADIAL OSCILLATIONS; GRAVITATIONAL-WAVES; UNIVERSAL RELATIONS; NORMAL-MODES; GRAVITY; EQUATIONS;
D O I
10.1103/PhysRevD.92.024010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.
引用
收藏
页数:27
相关论文
共 98 条
  • [21] Stationary Black Holes: Uniqueness and Beyond
    Chrusciel, Piotr T.
    Costa, Joao Lopes
    Heusler, Markus
    [J]. LIVING REVIEWS IN RELATIVITY, 2012, 15
  • [22] Measurability of the tidal polarizability of neutron stars in late-inspiral gravitational-wave signals
    Damour, Thibault
    Nagar, Alessandro
    Villain, Loic
    [J]. PHYSICAL REVIEW D, 2012, 85 (12):
  • [23] Relativistic tidal properties of neutron stars
    Damour, Thibault
    Nagar, Alessandro
    [J]. PHYSICAL REVIEW D, 2009, 80 (08):
  • [24] Gravitational polarizability of black holes
    Damour, Thibault
    Lecian, Orchidea Maria
    [J]. PHYSICAL REVIEW D, 2009, 80 (04):
  • [25] BREAKDOWN OF I-LOVE-Q UNIVERSALITY IN RAPIDLY ROTATING RELATIVISTIC STARS
    Doneva, Daniela D.
    Yazadjiev, Stoytcho S.
    Stergioulas, Nikolaos
    Kokkotas, Kostas D.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2014, 781 (01)
  • [26] Tidal coupling of a Schwarzschild black hole and circularly orbiting moon
    Fang, H
    Lovelace, G
    [J]. PHYSICAL REVIEW D, 2005, 72 (12)
  • [27] Systematic Parameter Errors in Inspiraling Neutron Star Binaries
    Favata, Marc
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (10)
  • [28] The Large Observatory for X-ray Timing (LOFT)
    Feroci, M.
    Stella, L.
    van der Klis, M.
    Courvoisier, T. J. -L.
    Hernanz, M.
    Hudec, R.
    Santangelo, A.
    Walton, D.
    Zdziarski, A.
    Barret, D.
    Belloni, T.
    Braga, J.
    Brandt, S.
    Budtz-Jorgensen, C.
    Campana, S.
    den Herder, J. -W.
    Huovelin, J.
    Israel, G. L.
    Pohl, M.
    Ray, P.
    Vacchi, A.
    Zane, S.
    Argan, A.
    Attina, P.
    Bertuccio, G.
    Bozzo, E.
    Campana, R.
    Chakrabarty, D.
    Costa, E.
    De Rosa, A.
    Del Monte, E.
    Di Cosimo, S.
    Donnarumma, I.
    Evangelista, Y.
    Haas, D.
    Jonker, P.
    Korpela, S.
    Labanti, C.
    Malcovati, P.
    Mignani, R.
    Muleri, F.
    Rapisarda, M.
    Rashevsky, A.
    Rea, N.
    Rubini, A.
    Tenzer, C.
    Wilson-Hodge, C.
    Winter, B.
    Wood, K.
    Zampa, G.
    [J]. EXPERIMENTAL ASTRONOMY, 2012, 34 (02) : 415 - 444
  • [29] Quasi-normal modes and gravitational wave astronomy
    Ferrari, Valeria
    Gualtieri, Leonardo
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2008, 40 (05) : 945 - 970
  • [30] New approach to the study of quasinormal modes of rotating stars
    Ferrari, Valeria
    Gualtieri, Leonardo
    Marassi, Stefania
    [J]. PHYSICAL REVIEW D, 2007, 76 (10):