Tidal deformations of a spinning compact object

被引:120
作者
Pani, Paolo [1 ,2 ,3 ]
Gualtieri, Leonardo [1 ,2 ]
Maselli, Andrea [4 ]
Ferrari, Valeria [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, PA Moro 5, I-00185 Rome, Italy
[2] Sez INFN Roma1, I-00185 Rome, Italy
[3] Univ Lisbon, Inst Super Tecn, Dept Fis, CENTRA, P-1049 Lisbon, Portugal
[4] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, Atlanta, GA 30332 USA
来源
PHYSICAL REVIEW D | 2015年 / 92卷 / 02期
关键词
ROTATING RELATIVISTIC STARS; MULTIPOLE MOMENTS; NEUTRON-STARS; BLACK-HOLES; NONRADIAL OSCILLATIONS; GRAVITATIONAL-WAVES; UNIVERSAL RELATIONS; NORMAL-MODES; GRAVITY; EQUATIONS;
D O I
10.1103/PhysRevD.92.024010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The deformability of a compact object induced by a perturbing tidal field is encoded in the tidal Love numbers, which depend sensibly on the object's internal structure. These numbers are known only for static, spherically-symmetric objects. As a first step to compute the tidal Love numbers of a spinning compact star, here we extend powerful perturbative techniques to compute the exterior geometry of a spinning object distorted by an axisymmetric tidal field to second order in the angular momentum. The spin of the object introduces couplings between electric and magnetic deformations and new classes of induced Love numbers emerge. For example, a spinning object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second order in the spin. The deformations are encoded in a set of inhomogeneous differential equations which, remarkably, can be solved analytically in vacuum. We discuss certain subtleties in defining the tidal Love numbers in general relativity, which are due to the difficulty in separating the tidal field from the linear response of the object in the solution, even in the static case. By extending the standard procedure to identify the linear response in the static case, we prove analytically that the Love numbers of a Kerr black hole remain zero to second order in the spin. As a by-product, we provide the explicit form for a slowly-rotating, tidally-deformed Kerr black hole to quadratic order in the spin, and discuss its geodesic and geometrical properties.
引用
收藏
页数:27
相关论文
共 98 条
  • [1] Characterization of the LIGO detectors during their sixth science run
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T.
    Abernathy, M. R.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Adhikari, R. X.
    Affeldt, C.
    Agathos, M.
    Aggarwal, N.
    Aguiar, O. D.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, R. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C.
    Areeda, J.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Austin, L.
    Aylott, B. E.
    Babak, S.
    Baker, P. T.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barker, D.
    Barnum, S. H.
    Barone, F.
    Barr, B.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Basti, A.
    Batch, J.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (11)
  • [2] Advanced Virgo: a second-generation interferometric gravitational wave detector
    Acernese, F.
    Agathos, M.
    Agatsuma, K.
    Aisa, D.
    Allemandou, N.
    Allocca, A.
    Amarni, J.
    Astone, P.
    Balestri, G.
    Ballardin, G.
    Barone, F.
    Baronick, J-P
    Barsuglia, M.
    Basti, A.
    Basti, F.
    Bauer, Th S.
    Bavigadda, V.
    Bejger, M.
    Beker, M. G.
    Belczynski, C.
    Bersanetti, D.
    Bertolini, A.
    Bitossi, M.
    Bizouard, M. A.
    Bloemen, S.
    Blom, M.
    Boer, M.
    Bogaert, G.
    Bondi, D.
    Bondu, F.
    Bonelli, L.
    Bonnand, R.
    Boschi, V.
    Bosi, L.
    Bouedo, T.
    Bradaschia, C.
    Branchesi, M.
    Briant, T.
    Brillet, A.
    Brisson, V.
    Bulik, T.
    Bulten, H. J.
    Buskulic, D.
    Buy, C.
    Cagnoli, G.
    Calloni, E.
    Campeggi, C.
    Canuel, B.
    Carbognani, F.
    Cavalier, F.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [3] Low-frequency gravitational-wave science with eLISA/NGO
    Amaro-Seoane, Pau
    Aoudia, Sofiane
    Babak, Stanislav
    Binetruy, Pierre
    Berti, Emanuele
    Bohe, Alejandro
    Caprini, Chiara
    Colpi, Monica
    Cornish, Neil J.
    Danzmann, Karsten
    Dufaux, Jean-Francois
    Gair, Jonathan
    Jennrich, Oliver
    Jetzer, Philippe
    Klein, Antoine
    Lang, Ryan N.
    Lobo, Alberto
    Littenberg, Tyson
    McWilliams, Sean T.
    Nelemans, Gijs
    Petiteau, Antoine
    Porter, Edward K.
    Schutz, Bernard F.
    Sesana, Alberto
    Stebbins, Robin
    Sumner, Tim
    Vallisneri, Michele
    Vitale, Stefano
    Volonteri, Marta
    Ward, Henry
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
  • [4] [Anonymous], ARXIV13042228
  • [5] [Anonymous], 2000, Solar System Dynamics, DOI DOI 10.1017/CBO9781139174817
  • [6] Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models
    Baiotti, Luca
    Damour, Thibault
    Giacomazzo, Bruno
    Nagar, Alessandro
    Rezzolla, Luciano
    [J]. PHYSICAL REVIEW D, 2011, 84 (02):
  • [7] Analytic Modeling of Tidal Effects in the Relativistic Inspiral of Binary Neutron Stars
    Baiotti, Luca
    Damour, Thibault
    Giacomazzo, Bruno
    Nagar, Alessandro
    Rezzolla, Luciano
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [8] Gravitational self-force in extreme mass-ratio inspirals
    Barack, Leor
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (21)
  • [9] Tidal effects in binary neutron star coalescence
    Bernuzzi, Sebastiano
    Nagar, Alessandro
    Thierfelder, Marcus
    Bruegmann, Bernd
    [J]. PHYSICAL REVIEW D, 2012, 86 (04):
  • [10] Testing general relativity with present and future astrophysical observations
    Berti, Emanuele
    Barausse, Enrico
    Cardoso, Vitor
    Gualtieri, Leonardo
    Pani, Paolo
    Sperhake, Ulrich
    Stein, Leo C.
    Wex, Norbert
    Yagi, Kent
    Baker, Tessa
    Burgess, C. P.
    Coelho, Flavio S.
    Doneva, Daniela
    De Felice, Antonio
    Ferreira, Pedro G.
    Freire, Paulo C. C.
    Healy, James
    Herdeiro, Carlos
    Horbatsch, Michael
    Kleihaus, Burkhard
    Klein, Antoine
    Kokkotas, Kostas
    Kunz, Jutta
    Laguna, Pablo
    Lang, Ryan N.
    Li, Tjonnie G. F.
    Littenberg, Tyson
    Matas, Andrew
    Mirshekari, Saeed
    Okawa, Hirotada
    Radu, Eugen
    O'Shaughnessy, Richard
    Sathyaprakash, Bangalore S.
    Van den Broeck, Chris
    Winther, Hans A.
    Witek, Helvi
    Aghili, Mir Emad
    Alsing, Justin
    Bolen, Brett
    Bombelli, Luca
    Caudill, Sarah
    Chen, Liang
    Degollado, Juan Carlos
    Fujita, Ryuichi
    Gao, Caixia
    Gerosa, Davide
    Kamali, Saeed
    Silva, Hector O.
    Rosa, Joao G.
    Sadeghian, Laleh
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (24)