Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term

被引:31
作者
Repovs, Dusan [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Educ, SI-1000 Ljubljana, Slovenia
关键词
Quasilinear elliptic equation; Boundary blow-up; Asymptotic analysis; Regular variation theory; BOUNDARY BLOW-UP; UNIQUENESS; BIEBERBACH; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jmaa.2012.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the asymptotic analysis of positive blow-up boundary solutions for a class of quasilinear elliptic equations with an absorption term. By means of the Karamata theory we establish the first two terms in the expansion of the singular solution near the boundary. Our analysis includes large classes of nonlinearities of Keller-Osserman type. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 85
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 1976, LECT NOTES MATH
[2]  
[Anonymous], 1957, PACIFIC J MATH
[3]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[4]  
Bandle C., 1998, Differ. Integral Equ, V11, P23
[5]   'Boundary blowup' type sub-solutions to semilinear elliptic equations with Hardy potential [J].
Bandle, Catherine ;
Moroz, Vitaly ;
Reichel, Wolfgang .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 :503-523
[6]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[7]  
Bieberbach L, 1915, MATH ANN, V77, P173
[8]  
Bingham N.H., 1989, REGULAR VARIATION
[9]  
Cîrstea FC, 2006, ASYMPTOTIC ANAL, V46, P275
[10]   Asymptotics for the blow-up boundary solution of the logistic equation with absorption [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (03) :231-236