Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids

被引:111
|
作者
Vasilescu, C. [1 ]
Drob, S. I. [1 ]
Neacsu, E. I. [1 ]
Mirza Rosca, J. C. [2 ]
机构
[1] Romanian Acad, Inst Phys Chem Ilie Murgulescu, Bucharest 060021, Romania
[2] Las Palmas de Gran Canaria Univ, Tafira 35017, Spain
关键词
Alloy; Cyclic voltammetry; EIS; XPS; Passive films; RINGERS LACTATE SOLUTION; ELECTROCHEMICAL CORROSION; IMPEDANCE SPECTROSCOPY; TI-15ZR-4NB-4TA ALLOY; CALCIUM-PHOSPHATE; FATIGUE STRENGTH; BEHAVIOR; TI-6AL-4V; TI; TI-13NB-13ZR;
D O I
10.1016/j.corsci.2012.08.042
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new quaternary Ti-20Nb-10Zr-5Ta alloy with 3-near microstructure was obtained. Its native passive film composition and its modification and corrosion resistance after 2000 immersion hours in simulated biofluids were studied. The native film on the alloy surface contains TiO2, Nb2O5, ZrO2, Ta2O5 protective oxides as was demonstrated by XPS. After 2000 h, XPS revealed the presence of same oxides and calcium, phosphorous ions deposited from physiological solutions as hydroxyapatite. In Ringer and Ringer-Brown solutions, the new alloy presented low corrosion rates. Impedance data exhibited a passive film with two layers: an inner, barrier layer and an outer, porous layer. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [21] Influence of Zirconium on the Corrosion Passivation of Titanium in Simulated Body Fluid
    Alharbi, Hamad F.
    Bahri, Yassir A.
    Sherif, El-Sayed M.
    CRYSTALS, 2021, 11 (11)
  • [22] Improving biotribological properties and corrosion resistance of CoCrMo alloy via a Cr-GLC nanocomposite film in simulated body fluids
    Xiang, D. D.
    Sui, X. D.
    Tan, X. P.
    Hao, J. Y.
    Wang, Z. W.
    Liao, Z. H.
    Liu, W. Q.
    Tor, S. B.
    SURFACE & COATINGS TECHNOLOGY, 2019, 378
  • [23] Application of EIS to Study the Corrosion Resistance of Passivated NiTi Shape Memory Alloy in Simulated Body Fluid
    Freitag, M.
    Losiewicz, B.
    Goryczka, T.
    Lelatko, J.
    ENVIRONMENTAL DEGRADATION OF ENGINEERING & MATERIALS ENGINEERING AND TECHNOLOGIES, 2012, 183 : 57 - 64
  • [24] Corrosion Properties of a Low-Nickel Austenitic Porous Stainless Steel in Simulated Body Fluids
    Garcia-Cabezon, C.
    Martin-Pedrosa, F.
    Blanco-Val, Y.
    Rodriguez-Mendez, M. L.
    CORROSION, 2018, 74 (06) : 683 - 693
  • [25] Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid
    Fekry, A. M.
    El-Sherif, Rabab M.
    ELECTROCHIMICA ACTA, 2009, 54 (28) : 7280 - 7285
  • [26] Corrosion Resistance of Titanium Dental Implant Abutments: Comparative Analysis and Surface Characterization
    Kowalski, Jakub
    Rylska, Dorota
    Januszewicz, Bartlomiej
    Konieczny, Bartlomiej
    Cichomski, Michal
    Matinlinna, Jukka P.
    Radwanski, Mateusz
    Sokolowski, Jerzy
    Lukomska-Szymanska, Monika
    MATERIALS, 2023, 16 (20)
  • [27] Corrosion Resistance of Passivated NiTi After Long-Term Exposure to Simulated Body Fluids
    Kaczmarek, Marcin
    Kurtyka, Przemyslaw
    Paszenda, Zbigniew
    INNOVATIONS IN BIOMEDICAL ENGINEERING, 2019, 925 : 301 - 311
  • [28] Influence of Tantalum Addition on the Corrosion Passivation of Titanium-Zirconium Alloy in Simulated Body Fluid
    Sherif, El-Sayed M.
    Bahri, Yassir A. A.
    Alharbi, Hamad F. F.
    Ijaz, Muhammad Farzik
    Alnaser, Ibrahim A. A.
    MATERIALS, 2022, 15 (24)
  • [29] Investigation on the Corrosion Resistance of T4C Titanium Alloy in Simulated Oilfield Solution
    Lu, Xiang-hong
    Zhang, Xin-xin
    Li, Hong-fu
    Chen, Long
    Wang, Chen
    Li, Jian
    Liu, Yan-ming
    Li, Ning
    Deng, Jing-yu
    Zheng, Wen -long
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (12):
  • [30] Corrosion-fatigue resistance of ultrafine grain commercially pure titanium in simulated body fluid
    Naseri, Reza
    Hiradfar, Hamed
    Shariati, Mahmoud
    Kadkhodayan, Mehran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (06) : 2181 - 2191