Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system

被引:78
作者
Calvet, Nicolas [1 ,2 ]
Gomez, Judith C. [2 ]
Faik, Abdessamad [1 ]
Roddatis, Vladimir V. [1 ]
Meffre, Antoine [3 ]
Glatzmaier, Greg C. [2 ]
Doppiu, Stefania [1 ]
Py, Xavier [3 ]
机构
[1] CIC Energigune, Minano 01510, Alava, Spain
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] Univ Perpignan, PROMES CNRS, UPR8521, F-66100 Perpignan, France
关键词
Concentrated solar power (CSP); Thermal energy storage (TES); Molten salt thermocline; Filler materials; Ceramic; Asbestos containing waste (ACW);
D O I
10.1016/j.apenergy.2012.12.078
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper demonstrates the potential of a post-industrial ceramic commercially called Cofalit (R) as a promising, sustainable, and cheap filler material in a molten salt direct thermocline storage system. This ceramic, which comes from industrial treatment of asbestos containing waste, demonstrates relevant properties to store thermal energy by sensible heat up to 1100 degrees C and is very inexpensive. In the present study, the compatibility of this ceramic with two different molten salts-the conventional binary Solar salt and a promising ternary nitrate salt also called HITEC XL-is tested at medium temperature (500 degrees C) under static state. The objective is to develop a molten salt thermocline direct storage system using low-cost shaped ceramic as filler material. It should significantly decrease the cost of parabolic trough storage systems and simultaneously increase the efficiency of the plants by producing superheated steam at higher temperature. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 2010, SOL THERM STOR SYST
[2]  
[Anonymous], P SOLARPACES 2011 GR
[3]  
Bayon R, 2012, P SOLARPACES 2012 C
[4]   Testing of thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants [J].
Brosseau, D ;
Kelton, JW ;
Ray, D ;
Edgar, M ;
Chisman, K ;
Emms, B .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2005, 127 (01) :109-116
[5]  
Cosar P, 1978, REV GEN THERMIQUE AO, P200
[6]  
Donatini F, 2007, HIGH EFFICIENCY INTE
[7]   Thermal storage material from inertized wastes: Evolution of structural and radiative properties with temperature [J].
Faik, A. ;
Guillot, S. ;
Lambert, J. ;
Veron, E. ;
Ory, S. ;
Bessada, C. ;
Echegut, P. ;
Py, X. .
SOLAR ENERGY, 2012, 86 (01) :139-146
[8]   An integrated thermal and mechanical investigation of molten-salt thermocline energy storage [J].
Flueckiger, Scott ;
Yang, Zhen ;
Garimella, Suresh V. .
APPLIED ENERGY, 2011, 88 (06) :2098-2105
[9]   State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization [J].
Gil, Antoni ;
Medrano, Marc ;
Martorell, Ingrid ;
Lazaro, Ana ;
Dolado, Pablo ;
Zalba, Belen ;
Cabeza, Luisa F. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (01) :31-55
[10]   Ca(NO3)2-NaNO3-KNO3 Molten Salt Mixtures for Direct Thermal Energy Storage Systems in Parabolic Trough Plants [J].
Gomez, Judith C. ;
Calvet, Nicolas ;
Starace, Anne K. ;
Glatzmaier, Greg C. .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2013, 135 (02)