Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study

被引:83
|
作者
Genc, Alper Mete [1 ]
Ezan, Mehmet Akif [2 ]
Turgut, Alpaslan [2 ]
机构
[1] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Mech Engn Dept, Tinaztepe Campus, TR-35397 Izmir, Turkey
[2] Dokuz Eylul Univ, Engn Fac, Mech Engn Dept, Tinaztepe Campus, TR-35397 Izmir, Turkey
关键词
Flat-plate; Solar collector; Transient analysis; Al2O3; Nanofluids; EXERGY EFFICIENCY; ENERGY; WORKING;
D O I
10.1016/j.applthermaleng.2017.10.166
中图分类号
O414.1 [热力学];
学科分类号
摘要
Flat plate solar collectors (FPSCs) are commonly used devices to convert solar radiation into useful heat for a variety of thermal applications. Due to the lower thermal efficiencies of these systems, recently, nanofluids are suggested to be used in FPSCs as the working fluid to enhance their energy harvesting potential. This study introduces a transient heat transfer approach for determining the thermal inertia of each component such as glass, trapped air, absorber and working fluid for nanofluid based flat plate solar collectors. The analyses were carried out with water and three different volumetric concentrations of Al2O3 nanoparticles as 1%, 2% and 3%. Mass flow rate of the heat transfer fluid is varied in a wide range, between 0.004 and 0.06 kg/s, to demonstrate the effect of thermophysical properties at different flow Reynolds numbers. The results indicate that the maximum increase of the outlet temperature is obtained by 7.20% at 0.004 kg/s and 3% (vol.) mass flow rate and volumetric concentration, respectively, in July. On the other hand, the highest thermal efficiency is obtained as 83.90% at 0.06 kg/s mass flow rate for 1% (vol.) in October. It is worthy of note that nanofluids can increase the thermal efficiency of the FPSCs at lower flow rates and beyond a critical flow rate the base fluid becomes effective working fluid. For the current study, the critical flow rate is determined to be 0.016 kg/s. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:395 / 407
页数:13
相关论文
共 50 条
  • [21] Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector
    Kilic, Faruk
    Menlik, Tayfun
    Sozen, Adnan
    SOLAR ENERGY, 2018, 164 : 101 - 108
  • [22] Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector
    Choudhary, Suraj
    Sachdeva, Anish
    Kumar, Pramod
    RENEWABLE ENERGY, 2020, 147 : 1801 - 1814
  • [23] Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid
    Ram Kunwer
    Ramesh K. Donga
    Ramesh Kumar
    Harpal Singh
    Process Integration and Optimization for Sustainability, 2023, 7 : 1333 - 1343
  • [24] Experimental investigation of CuO nanofluid in the thermal characteristics of a flat plate solar collector
    Mirzaei, Mohsen
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2019, 38 (01) : 260 - 267
  • [25] Thermal Characterization of Flat Plate Solar Collector Using Titanium Dioxide Nanofluid
    Kunwer, Ram
    Donga, Ramesh K.
    Kumar, Ramesh
    Singh, Harpal
    PROCESS INTEGRATION AND OPTIMIZATION FOR SUSTAINABILITY, 2023, 7 (05) : 1333 - 1343
  • [26] Thermodynamic analysis of hybrid nanofluid based solar flat plate collector
    Babu, Ranga J. A.
    Kumar, Kiran K.
    Rao, Srinivasa S.
    WORLD JOURNAL OF ENGINEERING, 2018, 15 (01) : 27 - 39
  • [27] Study on thermal performance of V-corrugated flat plate solar collector
    Fan M.
    You S.
    Zhang H.
    Jiang Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2022, 43 (01): : 478 - 483
  • [28] Performance analysis and optimization of an absorption chiller driven by nanofluid based solar flat plate collector
    Bellos, Evangelos
    Tzivanidis, Christos
    JOURNAL OF CLEANER PRODUCTION, 2018, 174 : 256 - 272
  • [29] Thermal Performance of Spiral Flat Plate Solar Water Collector
    Jawad, Sarah Abbas
    Rashid, Farhan Lafta
    Ridha, Zeina Ali Abdul
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (01) : 183 - 192
  • [30] Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review
    Alam, Tabish
    Balam, Nagesh Babu
    Kulkarni, Kishor Sitaram
    Siddiqui, Md Irfanul Haque
    Kapoor, Nishant Raj
    Meena, Chandan Swaroop
    Kumar, Ashok
    Cozzolino, Raffaello
    ENERGIES, 2021, 14 (19)