Thermal performance of a nanofluid-based flat plate solar collector: A transient numerical study

被引:84
作者
Genc, Alper Mete [1 ]
Ezan, Mehmet Akif [2 ]
Turgut, Alpaslan [2 ]
机构
[1] Dokuz Eylul Univ, Grad Sch Nat & Appl Sci, Mech Engn Dept, Tinaztepe Campus, TR-35397 Izmir, Turkey
[2] Dokuz Eylul Univ, Engn Fac, Mech Engn Dept, Tinaztepe Campus, TR-35397 Izmir, Turkey
关键词
Flat-plate; Solar collector; Transient analysis; Al2O3; Nanofluids; EXERGY EFFICIENCY; ENERGY; WORKING;
D O I
10.1016/j.applthermaleng.2017.10.166
中图分类号
O414.1 [热力学];
学科分类号
摘要
Flat plate solar collectors (FPSCs) are commonly used devices to convert solar radiation into useful heat for a variety of thermal applications. Due to the lower thermal efficiencies of these systems, recently, nanofluids are suggested to be used in FPSCs as the working fluid to enhance their energy harvesting potential. This study introduces a transient heat transfer approach for determining the thermal inertia of each component such as glass, trapped air, absorber and working fluid for nanofluid based flat plate solar collectors. The analyses were carried out with water and three different volumetric concentrations of Al2O3 nanoparticles as 1%, 2% and 3%. Mass flow rate of the heat transfer fluid is varied in a wide range, between 0.004 and 0.06 kg/s, to demonstrate the effect of thermophysical properties at different flow Reynolds numbers. The results indicate that the maximum increase of the outlet temperature is obtained by 7.20% at 0.004 kg/s and 3% (vol.) mass flow rate and volumetric concentration, respectively, in July. On the other hand, the highest thermal efficiency is obtained as 83.90% at 0.06 kg/s mass flow rate for 1% (vol.) in October. It is worthy of note that nanofluids can increase the thermal efficiency of the FPSCs at lower flow rates and beyond a critical flow rate the base fluid becomes effective working fluid. For the current study, the critical flow rate is determined to be 0.016 kg/s. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:395 / 407
页数:13
相关论文
共 48 条
[1]   Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids [J].
Alim, M. A. ;
Abdin, Z. ;
Saidur, R. ;
Hepbasli, A. ;
Khairul, M. A. ;
Rahim, N. A. .
ENERGY AND BUILDINGS, 2013, 66 :289-296
[2]   Transient method for testing flat-plate solar collectors [J].
Amer, EH ;
Nayak, JK ;
Sharma, GK .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (07) :549-558
[3]  
[Anonymous], 2016, EN EC
[4]  
[Anonymous], 1980, Numerical heat transfer and fluid flow
[5]  
[Anonymous], 2021, REV WORLD EN
[6]   2ND LAW ANALYSIS AND SYNTHESIS OF SOLAR COLLECTOR SYSTEMS [J].
BEJAN, A ;
KEARNEY, DW ;
KREITH, F .
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1981, 103 (01) :23-28
[7]  
Cengel Y. A., 2005, FUNDAMENTALS THERMAL, P1138
[8]  
Choi SUS., 1995, ASME, V66, P99, DOI DOI 10.1115/1.1532008
[9]   Experimental test of an innovative high concentration nanofluid solar collector [J].
Colangelo, Gianpiero ;
Favale, Ernani ;
Miglietta, Paola ;
de Risi, Arturo ;
Milanese, Marco ;
Laforgia, Domenico .
APPLIED ENERGY, 2015, 154 :874-881
[10]   A review on preparation, characterization, properties and applications of nanofluids [J].
Devendiran, Dhinesh Kumar ;
Amirtham, Valan Arasu .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 60 :21-40