A Worst-Case-Aware Design Methodology for Noise-Tolerant Oscillator-Based True Random Number Generator With Stochastic Behavior Modeling

被引:20
作者
Amaki, Takehiko [1 ,2 ]
Hashimoto, Masanori [1 ,2 ]
Mitsuyama, Yukio [2 ,3 ]
Onoye, Takao [1 ,2 ]
机构
[1] Osaka Univ, Dept Informat Syst Engn, Suita, Osaka 5650871, Japan
[2] CREST, JST, Tokyo 1020075, Japan
[3] Kochi Univ Technol, Sch Syst Engn, Kami 7828502, Japan
关键词
True random number generator; Markov chain; stochastic model; Jitter;
D O I
10.1109/TIFS.2013.2271423
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a worst-case-aware design methodology for an oscillator-based true random number generator (TRNG) that produces highly random bit streams even under deterministic noise. We propose a stochastic behavior model to efficiently determine design parameters, and identify a class of deterministic noise under which the randomness gets the worst. They can be used to directly estimate the worst chi value of a poker test under deterministic noise without generating bit streams, which enables efficient exploration of design space and guarantees sufficient randomness in a hostile environment. The proposed model is validated by measuring prototype TRNGs fabricated with a 65-nm CMOS process.
引用
收藏
页码:1331 / 1342
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 2001, NIST PUB
[2]  
[Anonymous], 2001, FIPS PUB
[3]  
[Anonymous], 1999, INTEL RANDOM NUMBER
[4]   A 440-nA True Random Number Generator for Passive RFID Tags [J].
Balachandran, Ganesh K. ;
Barnett, Raymond E. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (11) :3723-3732
[5]  
Baudet M., 2010, J CRYPTOL, P1
[6]  
Bernard F, 2010, TATRA MT MATH PUBL, V45, P1
[7]   A high-speed oscillator-based truly random number source for cryptographic applications on a Smart Card IC [J].
Bucci, M ;
Germani, L ;
Luzzi, R ;
Trifiletti, A ;
Varanonuovo, M .
IEEE TRANSACTIONS ON COMPUTERS, 2003, 52 (04) :403-409
[8]  
DAVIS RICARDO FRENCH, 2002, EXCLUSIVE OR XOR HAR, P1
[9]  
Ergun S., 2008, P EUR SIGN PROC C EU, P1
[10]  
Ledermann W., 1980, HDB APPL MATH, V6