The Effect of Noise and Outliers on Fuzzy Clustering of High Dimensional Data

被引:1
作者
Himmelspach, Ludmila [1 ]
Conrad, Stefan [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Inst Comp Sci, D-40225 Dusseldorf, Germany
来源
PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, VOL 2: FCTA | 2016年
关键词
Fuzzy Clustering; c-Means Models; High Dimensional Data; Noise; Possibilistic Clustering;
D O I
10.5220/0006070601010108
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Clustering high dimensional data is still a challenging problem for fuzzy clustering algorithms because distances between each pair of data items get similar with the increasing number of dimensions. The presence of noise and outliers in data is an additional problem for clustering algorithms because they might affect the computation of cluster centers. In this work, we analyze the effect of different kinds of noise and outliers on fuzzy clustering algorithms that can handle high dimensional data: FCM with attribute weighting, the multivariate fuzzy c-means (MFCM), and the possibilistic multivariate fuzzy c-means (PMFCM). Additionally, we propose a new version of PMFCM to enhance its ability handling noise and outliers in high dimensional data. The experimental results on different high dimensional data sets show that the possibilistic versions of MFCM produce accurate cluster centers independently of the kind of noise and outliers.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 15 条
[1]  
Beyer K, 1999, LECT NOTES COMPUT SC, V1540, P217
[2]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[3]   Robust clustering methods: A unified view [J].
Dave, RN ;
Krishnapuram, R .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1997, 5 (02) :270-293
[4]  
Dunn J. C., 1973, Journal of Cybernetics, V3, P32, DOI 10.1080/01969727308546046
[5]   A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm [J].
Himmelspach, Ludmila ;
Conrad, Stefan .
SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 :338-344
[6]   Fuzzy clustering with weighting of data variables [J].
Keller, A ;
Klawonn, F .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2000, 8 (06) :735-746
[7]  
Klawonn F., 2013, P 10 INT WORKSH FUZZ, P1
[8]   Fuzzy clustering: More than just fuzzification [J].
Klawonn, Frank ;
Kruse, Rudolf ;
Winkler, Roland .
FUZZY SETS AND SYSTEMS, 2015, 281 :272-279
[9]  
Kriegel HP, 2009, LECT NOTES ARTIF INT, V5476, P831, DOI 10.1007/978-3-642-01307-2_86
[10]  
Krishnapuram R., 1993, IEEE Transactions on Fuzzy Systems, V1, P98, DOI 10.1109/91.227387