Thermodynamics and transport in an active Morse ring chain

被引:15
作者
Dunkel, J [1 ]
Ebeling, W [1 ]
Erdmann, U [1 ]
机构
[1] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
关键词
D O I
10.1007/s10051-001-8705-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We investigate the stochastic dynamics of an one-dimensional ring with N self-driven Brownian particles. In this model neighboring particles interact via conservative Morse potentials. The influence of the surrounding heat bath is modeled by Langevin-forces (white noise) and a constant viscous friction coefficient gamma(0). The Brownian particles are provided with internal energy depots which may lead to active motions of the particles. The depots are realized by an additional nonlinearly velocity-dependent friction coefficient gamma(1)(upsilon) in the equations of motions. In the first part of the paper we study the partition functions of time averages and thermodynamical quantities (e.g. pressure) characterizing the stationary physical system. Numerically calculated non-equilibrium phase diagrams are represented. The last part is dedicated to transport phenomena by including a homogeneous external force field that breaks the symmetry of the model. Here we find enhanced mobility of the particles at low temperatures.
引用
收藏
页码:511 / 524
页数:14
相关论文
共 19 条
[1]  
DUNKEL J, 2001, IN PRESS INT J BIF C
[2]   Active Brownian particles with energy depots modeling animal mobility [J].
Ebeling, W ;
Schweitzer, F ;
Tilch, B .
BIOSYSTEMS, 1999, 49 (01) :17-29
[3]   Nonlinear dynamics and fluctuations of dissipative Toda chains [J].
Ebeling, W ;
Erdmann, U ;
Dunkel, J ;
Jenssen, M .
JOURNAL OF STATISTICAL PHYSICS, 2000, 101 (1-2) :443-457
[4]   Self-oscillations in ring Toda chains with negative friction [J].
Ebeling, W ;
Landa, PS ;
Ushakov, VG .
PHYSICAL REVIEW E, 2001, 63 (04) :466011-466018
[5]  
EBELING W, 1989, IRREVERSIBLE PROCESS
[6]  
EINSTEIN A, 1999, UNTERSUCHUNGEN THEOR, V199
[7]   Brownian particles far from equilibrium [J].
Erdmann, U ;
Ebeling, W ;
Schimansky-Geier, L ;
Schweitzer, F .
EUROPEAN PHYSICAL JOURNAL B, 2000, 15 (01) :105-113
[8]  
Feynman R. P., 1972, STAT MECH
[9]   ON VAN DER WAALS THEORY OF VAPOR-LIQUID EQUILIBRIUM .1. DISCUSSION OF A 1-DIMENSIONAL MODEL [J].
KAC, M ;
HEMMER, PC ;
UHLENBECK, GE .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :216-&
[10]  
Klimontovich Yu. L., 1994, Physics-Uspekhi, V37, P737, DOI 10.1070/PU1994v037n08ABEH000038