A scaling law to determine phase morphologies during ion intercalation

被引:68
作者
Fraggedakis, Dimitrios [1 ]
Nadkarni, Neel [1 ]
Gao, Tao [1 ]
Zhou, Tingtao [2 ]
Zhang, Yirui [3 ]
Han, Yu [1 ]
Stephens, Ryan M. [4 ]
Yang, Shao-Horn [3 ,5 ]
Bazant, Martin Z. [1 ,6 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] Shell Int Explorat & Prod Inc, Houston, TX 77082 USA
[5] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[6] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
IN-SITU OBSERVATION; PARTICLE-SIZE; LITHIUM DIFFUSION; RECHARGEABLE BATTERY; POROUS-ELECTRODE; INSERTION; TRANSFORMATION; DYNAMICS; KINETICS; SEPARATION;
D O I
10.1039/d0ee00653j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Driven phase separation in ion intercalation materials is known to result in different non-equilibrium phase morphologies, such as intercalation waves and shrinking-core structures, but the mechanisms of pattern selection are poorly understood. Here, based on the idea that the coarsening of the slowest phase is the rate limiting step, we introduce a scaling law that quantifies the transition from quasi-equilibrium intercalation-wave to diffusion-limited shrinking-core behavior. The scaling law is validated by phase-field simulations of single Li(x)CoO(2)particles,in situoptical imaging of single Li(x)C(6)particles undergoing transitions between stage 1 (x= 1) and 2 (x= 0.5) at different rates, and all the available literature data for single-particle imaging of LixCoO2, Li(x)C(6)and LixFePO4. The results are summarized in operational phase diagrams to guide simulations, experiments, and engineering applications of phase-separating active materials. Implications for Li-ion battery performance and degradation are discussed.
引用
收藏
页码:2142 / 2152
页数:11
相关论文
共 104 条
[1]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[2]  
Baldi A, 2014, NAT MATER, V13, P1143, DOI [10.1038/NMAT4086, 10.1038/nmat4086]
[3]  
Balluffi RW, 2005, KINETICS OF MATERIALS, P1
[4]   Thermodynamic stability of driven open systems and control of phase separation by electro-autocatalysis [J].
Bazant, Martin Z. .
FARADAY DISCUSSIONS, 2017, 199 :423-463
[5]   Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics [J].
Bazant, Martin Z. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1144-1160
[6]   Phase-transformation wave dynamics in LiFePO4 [J].
Burch, Damian ;
Singh, Gogi ;
Ceder, Gerbrand ;
Bazant, Martin Z. .
THEORY, MODELING AND NUMERICAL SIMULATION OF MULTI-PHYSICS MATERIALS BEHAVIOR, 2008, 139 :95-+
[7]   Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles [J].
Burch, Damian ;
Bazant, Martin Z. .
NANO LETTERS, 2009, 9 (11) :3795-3800
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   Diffusion on grain boundary networks: Percolation theory and effective medium approximations [J].
Chen, Ying ;
Schuh, Christopher A. .
ACTA MATERIALIA, 2006, 54 (18) :4709-4720
[10]   Intercalation Pathway in Many-Particle LiFePO4 Electrode Revealed by Nanoscale State-of-Charge Mapping [J].
Chueh, William C. ;
El Gabaly, Farid ;
Sugar, Joshua D. ;
Bartelt, Norman C. ;
McDaniel, Anthony H. ;
Fenton, Kyle R. ;
Zavadil, Kevin R. ;
Tyliszczak, Tolek ;
Lai, Wei ;
McCarty, Kevin F. .
NANO LETTERS, 2013, 13 (03) :866-872